{"title":"希腊凯法利尼亚转换断裂带(KTFZ)的大地震重现时间:基于物理的模拟器方法的结果","authors":"Christos Kourouklas, Rodolfo Console, Eleftheria Papadimitriou, Vassilios Karakostas, Maura Murru","doi":"10.4401/ag-8936","DOIUrl":null,"url":null,"abstract":"Large earthquakes mean recurrence time (Tr) on specific fault segments is one of the primary input parameters for developing long-term Earthquake Rupture Forecast (ERF) models in a specific time span considering either a time-independent or an elastic rebound motivated renewal assumption. An attempt is made to define Tr on the major fault segments comprised in Kefalonia Transform Fault Zone (KTFZ), which is an active boundary demarcating from the west the area of central Ionian Islands, namely Lefkada and Kefalonia, and is associated with remarkably high seismic activity. Frequent large (Mw ≥ 6.0) earthquakes are reported to have caused severe damage during the last six centuries. Although the number of large earthquakes (including both historical and instrumental) is satisfactory enough for regional hazard studies, their number become very limited when they are subdivided into subsets assigned to specific fault segments. Physics-based earthquake simulators are approaches to overcome recurrence intervals shortage, due to their ability to generate long lasting earthquake catalogs. The application of a physics-based simulatorn the KTFZ, is attemped upon a detailed fault network model and implemented multiple times and with a wide range of input parameters, aiming at the definition of the most representative simulated catalog in respect to the observed regional seismicity. The most representative simulated catalog is finally used for investigating the recurrence behavior of large (Mw ≥ 6.0) earthquakes and assessing whether the renewal model performs better that the Poisson model, after considering both individual and multiple ruptured segments scenarios.","PeriodicalId":50766,"journal":{"name":"Annals of Geophysics","volume":"24 5","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Earthquakes Recurrence Time in the Kefalonia Transform Fault Zone (KTFZ), Greece: Results from a physics-based simulator approach\",\"authors\":\"Christos Kourouklas, Rodolfo Console, Eleftheria Papadimitriou, Vassilios Karakostas, Maura Murru\",\"doi\":\"10.4401/ag-8936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large earthquakes mean recurrence time (Tr) on specific fault segments is one of the primary input parameters for developing long-term Earthquake Rupture Forecast (ERF) models in a specific time span considering either a time-independent or an elastic rebound motivated renewal assumption. An attempt is made to define Tr on the major fault segments comprised in Kefalonia Transform Fault Zone (KTFZ), which is an active boundary demarcating from the west the area of central Ionian Islands, namely Lefkada and Kefalonia, and is associated with remarkably high seismic activity. Frequent large (Mw ≥ 6.0) earthquakes are reported to have caused severe damage during the last six centuries. Although the number of large earthquakes (including both historical and instrumental) is satisfactory enough for regional hazard studies, their number become very limited when they are subdivided into subsets assigned to specific fault segments. Physics-based earthquake simulators are approaches to overcome recurrence intervals shortage, due to their ability to generate long lasting earthquake catalogs. The application of a physics-based simulatorn the KTFZ, is attemped upon a detailed fault network model and implemented multiple times and with a wide range of input parameters, aiming at the definition of the most representative simulated catalog in respect to the observed regional seismicity. The most representative simulated catalog is finally used for investigating the recurrence behavior of large (Mw ≥ 6.0) earthquakes and assessing whether the renewal model performs better that the Poisson model, after considering both individual and multiple ruptured segments scenarios.\",\"PeriodicalId\":50766,\"journal\":{\"name\":\"Annals of Geophysics\",\"volume\":\"24 5\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4401/ag-8936\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4401/ag-8936","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Large Earthquakes Recurrence Time in the Kefalonia Transform Fault Zone (KTFZ), Greece: Results from a physics-based simulator approach
Large earthquakes mean recurrence time (Tr) on specific fault segments is one of the primary input parameters for developing long-term Earthquake Rupture Forecast (ERF) models in a specific time span considering either a time-independent or an elastic rebound motivated renewal assumption. An attempt is made to define Tr on the major fault segments comprised in Kefalonia Transform Fault Zone (KTFZ), which is an active boundary demarcating from the west the area of central Ionian Islands, namely Lefkada and Kefalonia, and is associated with remarkably high seismic activity. Frequent large (Mw ≥ 6.0) earthquakes are reported to have caused severe damage during the last six centuries. Although the number of large earthquakes (including both historical and instrumental) is satisfactory enough for regional hazard studies, their number become very limited when they are subdivided into subsets assigned to specific fault segments. Physics-based earthquake simulators are approaches to overcome recurrence intervals shortage, due to their ability to generate long lasting earthquake catalogs. The application of a physics-based simulatorn the KTFZ, is attemped upon a detailed fault network model and implemented multiple times and with a wide range of input parameters, aiming at the definition of the most representative simulated catalog in respect to the observed regional seismicity. The most representative simulated catalog is finally used for investigating the recurrence behavior of large (Mw ≥ 6.0) earthquakes and assessing whether the renewal model performs better that the Poisson model, after considering both individual and multiple ruptured segments scenarios.
期刊介绍:
Annals of Geophysics is an international, peer-reviewed, open-access, online journal. Annals of Geophysics welcomes contributions on primary research on Seismology, Geodesy, Volcanology, Physics and Chemistry of the Earth, Oceanography and Climatology, Geomagnetism and Paleomagnetism, Geodynamics and Tectonophysics, Physics and Chemistry of the Atmosphere.
It provides:
-Open-access, freely accessible online (authors retain copyright)
-Fast publication times
-Peer review by expert, practicing researchers
-Free of charge publication
-Post-publication tools to indicate quality and impact
-Worldwide media coverage.
Annals of Geophysics is published by Istituto Nazionale di Geofisica e Vulcanologia (INGV), nonprofit public research institution.