Xiaoying Pan, Ningxin Jia, Yuanzhen Mu, Weidong Bai
{"title":"MSFE-PANet:基于yolov4的复杂场景小目标检测改进方法","authors":"Xiaoying Pan, Ningxin Jia, Yuanzhen Mu, Weidong Bai","doi":"10.1142/s0218001423500246","DOIUrl":null,"url":null,"abstract":"With the rapid development of computer vision and artificial intelligence technology, visual object detection has made unprecedented progress, and small object detection in complex scenes has attracted more and more attention. To solve the problems of ambiguity, overlap and occlusion in small object detection in complex scenes. In this paper, a multi-scale fusion feature enhanced path aggregation network MSFE-PANet is proposed. By adding attention mechanism and feature fusion, the fusion of strong positioning information of deep feature map and strong semantic information of shallow feature map is enhanced, which helps the network to find interesting areas in complex scenes and improve its sensitivity to small objects. The rejection loss function and network prediction scale are designed to solve the problems of missing detection and false detection of overlapping and blocking small objects in complex backgrounds. The proposed method achieves an accuracy of 40.7% on the VisDrone2021 dataset and 89.7% on the PASCAL VOC dataset. Comparative analysis with mainstream object detection algorithms proves the superiority of this method in detecting small objects in complex scenes.","PeriodicalId":54949,"journal":{"name":"International Journal of Pattern Recognition and Artificial Intelligence","volume":"49 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSFE-PANet: Improved YOLOv4-based Small Object Detection Method in Complex Scenes\",\"authors\":\"Xiaoying Pan, Ningxin Jia, Yuanzhen Mu, Weidong Bai\",\"doi\":\"10.1142/s0218001423500246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of computer vision and artificial intelligence technology, visual object detection has made unprecedented progress, and small object detection in complex scenes has attracted more and more attention. To solve the problems of ambiguity, overlap and occlusion in small object detection in complex scenes. In this paper, a multi-scale fusion feature enhanced path aggregation network MSFE-PANet is proposed. By adding attention mechanism and feature fusion, the fusion of strong positioning information of deep feature map and strong semantic information of shallow feature map is enhanced, which helps the network to find interesting areas in complex scenes and improve its sensitivity to small objects. The rejection loss function and network prediction scale are designed to solve the problems of missing detection and false detection of overlapping and blocking small objects in complex backgrounds. The proposed method achieves an accuracy of 40.7% on the VisDrone2021 dataset and 89.7% on the PASCAL VOC dataset. Comparative analysis with mainstream object detection algorithms proves the superiority of this method in detecting small objects in complex scenes.\",\"PeriodicalId\":54949,\"journal\":{\"name\":\"International Journal of Pattern Recognition and Artificial Intelligence\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pattern Recognition and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218001423500246\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pattern Recognition and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218001423500246","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
MSFE-PANet: Improved YOLOv4-based Small Object Detection Method in Complex Scenes
With the rapid development of computer vision and artificial intelligence technology, visual object detection has made unprecedented progress, and small object detection in complex scenes has attracted more and more attention. To solve the problems of ambiguity, overlap and occlusion in small object detection in complex scenes. In this paper, a multi-scale fusion feature enhanced path aggregation network MSFE-PANet is proposed. By adding attention mechanism and feature fusion, the fusion of strong positioning information of deep feature map and strong semantic information of shallow feature map is enhanced, which helps the network to find interesting areas in complex scenes and improve its sensitivity to small objects. The rejection loss function and network prediction scale are designed to solve the problems of missing detection and false detection of overlapping and blocking small objects in complex backgrounds. The proposed method achieves an accuracy of 40.7% on the VisDrone2021 dataset and 89.7% on the PASCAL VOC dataset. Comparative analysis with mainstream object detection algorithms proves the superiority of this method in detecting small objects in complex scenes.
期刊介绍:
The International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) welcomes both theory-oriented and innovative applications articles on new developments and is of interest to both researchers in academia and industry.
The current scope of this journal includes:
• Pattern Recognition
• Machine Learning
• Deep Learning
• Document Analysis
• Image Processing
• Signal Processing
• Computer Vision
• Biometrics
• Biomedical Image Analysis
• Artificial Intelligence
In addition to regular papers describing original research work, survey articles on timely and important research topics are highly welcome. Special issues with focused topics within the scope of this journal are also published.