Emily T. Richardson, Angela M. Hansen, Tamara E. C. Kraus, Bryan D. Downing, Don Forsberg, John Stillian, Katy O'Donnell, Crystal L. Sturgeon, Brian A. Bergamaschi
{"title":"高频电导氨分析仪的新型船载现场应用,用于描述水生生态系统的空间变化特征","authors":"Emily T. Richardson, Angela M. Hansen, Tamara E. C. Kraus, Bryan D. Downing, Don Forsberg, John Stillian, Katy O'Donnell, Crystal L. Sturgeon, Brian A. Bergamaschi","doi":"10.1002/lom3.10579","DOIUrl":null,"url":null,"abstract":"<p>Documenting dissolved inorganic nitrogen (DIN) concentrations and forms at appropriate temporal and spatial scales is key to understanding aquatic ecosystem health, particularly because DIN fuels primary productivity. In addition to point and nonpoint source nutrient inputs, factors such as hydrology, geomorphology, temperature, light, and biogeochemical transformations influence nutrient dynamics in surface waters, allowing for the formation of steep spatial gradients and patchiness. Documenting nutrient variability is also necessary to identify sources, quantify transformation rates, and understand drivers. Because of logistical and cost constraints, it is often unfeasible to measure concentrations of nutrients in surface waters using discrete sampling followed by laboratory analysis at a resolution high enough to identify steep spatial gradients and patchiness. Because of these constraints, data generated from discrete sampling are limited in space and time, often missing key variabilities. Recent advancements of in situ nitrate plus nitrite (<math>\n <mrow>\n <msubsup>\n <mi>NO</mi>\n <mn>3</mn>\n <mo>−</mo>\n </msubsup>\n </mrow></math> and <math>\n <mrow>\n <msubsup>\n <mi>NO</mi>\n <mn>2</mn>\n <mo>−</mo>\n </msubsup>\n </mrow></math>) sensor technology have enabled highly temporally and spatially resolved <math>\n <mrow>\n <msubsup>\n <mi>NO</mi>\n <mn>3</mn>\n <mo>−</mo>\n </msubsup>\n </mrow></math> concentration measurements in aquatic ecosystems. However, comparable information about ammonium (<math>\n <mrow>\n <msubsup>\n <mi>NH</mi>\n <mn>4</mn>\n <mo>+</mo>\n </msubsup>\n </mrow></math>) concentrations remains unavailable. To address this need, US Geological Survey collaborated with Timberline Instruments to modify their commercially available benchtop TL-2800 ammonia analyzer to operate in flow-through mode, enabling rapid continuous <math>\n <mrow>\n <msubsup>\n <mi>NH</mi>\n <mn>4</mn>\n <mo>+</mo>\n </msubsup>\n </mrow></math> concentration measurements at a micromolar (0.5 <i>μ</i>M) resolution while receiving water pumped from a moving boat. Although the utility of this method is described for spatial surveys, we anticipate that it would be adaptable to installation at a fixed station for continuous monitoring of <math>\n <mrow>\n <msubsup>\n <mi>NH</mi>\n <mn>4</mn>\n <mo>+</mo>\n </msubsup>\n </mrow></math> concentration.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"21 12","pages":"761-774"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10579","citationCount":"0","resultStr":"{\"title\":\"A novel boat-based field application of a high-frequency conductometric ammonium analyzer to characterize spatial variation in aquatic ecosystems\",\"authors\":\"Emily T. Richardson, Angela M. Hansen, Tamara E. C. Kraus, Bryan D. Downing, Don Forsberg, John Stillian, Katy O'Donnell, Crystal L. Sturgeon, Brian A. Bergamaschi\",\"doi\":\"10.1002/lom3.10579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Documenting dissolved inorganic nitrogen (DIN) concentrations and forms at appropriate temporal and spatial scales is key to understanding aquatic ecosystem health, particularly because DIN fuels primary productivity. In addition to point and nonpoint source nutrient inputs, factors such as hydrology, geomorphology, temperature, light, and biogeochemical transformations influence nutrient dynamics in surface waters, allowing for the formation of steep spatial gradients and patchiness. Documenting nutrient variability is also necessary to identify sources, quantify transformation rates, and understand drivers. Because of logistical and cost constraints, it is often unfeasible to measure concentrations of nutrients in surface waters using discrete sampling followed by laboratory analysis at a resolution high enough to identify steep spatial gradients and patchiness. Because of these constraints, data generated from discrete sampling are limited in space and time, often missing key variabilities. Recent advancements of in situ nitrate plus nitrite (<math>\\n <mrow>\\n <msubsup>\\n <mi>NO</mi>\\n <mn>3</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow></math> and <math>\\n <mrow>\\n <msubsup>\\n <mi>NO</mi>\\n <mn>2</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow></math>) sensor technology have enabled highly temporally and spatially resolved <math>\\n <mrow>\\n <msubsup>\\n <mi>NO</mi>\\n <mn>3</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow></math> concentration measurements in aquatic ecosystems. However, comparable information about ammonium (<math>\\n <mrow>\\n <msubsup>\\n <mi>NH</mi>\\n <mn>4</mn>\\n <mo>+</mo>\\n </msubsup>\\n </mrow></math>) concentrations remains unavailable. To address this need, US Geological Survey collaborated with Timberline Instruments to modify their commercially available benchtop TL-2800 ammonia analyzer to operate in flow-through mode, enabling rapid continuous <math>\\n <mrow>\\n <msubsup>\\n <mi>NH</mi>\\n <mn>4</mn>\\n <mo>+</mo>\\n </msubsup>\\n </mrow></math> concentration measurements at a micromolar (0.5 <i>μ</i>M) resolution while receiving water pumped from a moving boat. Although the utility of this method is described for spatial surveys, we anticipate that it would be adaptable to installation at a fixed station for continuous monitoring of <math>\\n <mrow>\\n <msubsup>\\n <mi>NH</mi>\\n <mn>4</mn>\\n <mo>+</mo>\\n </msubsup>\\n </mrow></math> concentration.</p>\",\"PeriodicalId\":18145,\"journal\":{\"name\":\"Limnology and Oceanography: Methods\",\"volume\":\"21 12\",\"pages\":\"761-774\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10579\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography: Methods\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10579\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10579","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
A novel boat-based field application of a high-frequency conductometric ammonium analyzer to characterize spatial variation in aquatic ecosystems
Documenting dissolved inorganic nitrogen (DIN) concentrations and forms at appropriate temporal and spatial scales is key to understanding aquatic ecosystem health, particularly because DIN fuels primary productivity. In addition to point and nonpoint source nutrient inputs, factors such as hydrology, geomorphology, temperature, light, and biogeochemical transformations influence nutrient dynamics in surface waters, allowing for the formation of steep spatial gradients and patchiness. Documenting nutrient variability is also necessary to identify sources, quantify transformation rates, and understand drivers. Because of logistical and cost constraints, it is often unfeasible to measure concentrations of nutrients in surface waters using discrete sampling followed by laboratory analysis at a resolution high enough to identify steep spatial gradients and patchiness. Because of these constraints, data generated from discrete sampling are limited in space and time, often missing key variabilities. Recent advancements of in situ nitrate plus nitrite ( and ) sensor technology have enabled highly temporally and spatially resolved concentration measurements in aquatic ecosystems. However, comparable information about ammonium () concentrations remains unavailable. To address this need, US Geological Survey collaborated with Timberline Instruments to modify their commercially available benchtop TL-2800 ammonia analyzer to operate in flow-through mode, enabling rapid continuous concentration measurements at a micromolar (0.5 μM) resolution while receiving water pumped from a moving boat. Although the utility of this method is described for spatial surveys, we anticipate that it would be adaptable to installation at a fixed station for continuous monitoring of concentration.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.