高效光催化去除水中持久性有机污染物的Bi4O5Br2/g-C3N4异质结设计

EcoEnergy Pub Date : 2023-10-31 DOI:10.1002/ece2.8
Pin Song, Jun Du, Xinliang Ma, Yunmei Shi, Xiaoyu Fang, Daobin Liu, Shiqiang Wei, Zhanfeng Liu, Yuyang Cao, Bo Lin, Jun Di, Yan Wang, Jiewu Cui, Tingting Kong, Chao Gao, Yujie Xiong
{"title":"高效光催化去除水中持久性有机污染物的Bi4O5Br2/g-C3N4异质结设计","authors":"Pin Song,&nbsp;Jun Du,&nbsp;Xinliang Ma,&nbsp;Yunmei Shi,&nbsp;Xiaoyu Fang,&nbsp;Daobin Liu,&nbsp;Shiqiang Wei,&nbsp;Zhanfeng Liu,&nbsp;Yuyang Cao,&nbsp;Bo Lin,&nbsp;Jun Di,&nbsp;Yan Wang,&nbsp;Jiewu Cui,&nbsp;Tingting Kong,&nbsp;Chao Gao,&nbsp;Yujie Xiong","doi":"10.1002/ece2.8","DOIUrl":null,"url":null,"abstract":"<p>Dyes and antibiotics as typical persistent organic pollutants (POPs) are widely present in the environment, but can hardly be removed completely by traditional water treatment methods. Here, we designed Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composite nanosheets for efficient photocatalytic removal of POPs in water. The Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composite with a heterojunction structure exhibited high adsorption and photocatalytic activity for removal of tetracycline (TC) and ciprofloxacin (CIP) with excellent cyclic stability, owing to its large specific surface area as well as enhanced charge separation and visible light utilization. Our characterization revealed that h<sup>+</sup> and ·OH are responsible for the photocatalytic degradation of TC and CIP. This work provides insights into the design of photocatalytic materials with synergy of adsorption and photocatalytic degradation, and offers a heterojunction construction strategy for addressing the increasingly severe environmental issues.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"1 1","pages":"197-206"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.8","citationCount":"0","resultStr":"{\"title\":\"Design of Bi4O5Br2/g-C3N4 heterojunction for efficient photocatalytic removal of persistent organic pollutants from water\",\"authors\":\"Pin Song,&nbsp;Jun Du,&nbsp;Xinliang Ma,&nbsp;Yunmei Shi,&nbsp;Xiaoyu Fang,&nbsp;Daobin Liu,&nbsp;Shiqiang Wei,&nbsp;Zhanfeng Liu,&nbsp;Yuyang Cao,&nbsp;Bo Lin,&nbsp;Jun Di,&nbsp;Yan Wang,&nbsp;Jiewu Cui,&nbsp;Tingting Kong,&nbsp;Chao Gao,&nbsp;Yujie Xiong\",\"doi\":\"10.1002/ece2.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dyes and antibiotics as typical persistent organic pollutants (POPs) are widely present in the environment, but can hardly be removed completely by traditional water treatment methods. Here, we designed Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composite nanosheets for efficient photocatalytic removal of POPs in water. The Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composite with a heterojunction structure exhibited high adsorption and photocatalytic activity for removal of tetracycline (TC) and ciprofloxacin (CIP) with excellent cyclic stability, owing to its large specific surface area as well as enhanced charge separation and visible light utilization. Our characterization revealed that h<sup>+</sup> and ·OH are responsible for the photocatalytic degradation of TC and CIP. This work provides insights into the design of photocatalytic materials with synergy of adsorption and photocatalytic degradation, and offers a heterojunction construction strategy for addressing the increasingly severe environmental issues.</p>\",\"PeriodicalId\":100387,\"journal\":{\"name\":\"EcoEnergy\",\"volume\":\"1 1\",\"pages\":\"197-206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece2.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

染料和抗生素作为典型的持久性有机污染物广泛存在于环境中,但传统的水处理方法很难完全去除。在这里,我们设计了Bi4O5Br2/g-C3N4复合纳米片,用于高效光催化去除水中的POPs。具有异质结结构的Bi4O5Br2/g-C3N4复合材料由于具有较大的比表面积、增强的电荷分离和可见光利用率,对四环素(TC)和环丙沙星(CIP)具有较高的吸附和光催化活性,并且具有良好的循环稳定性。我们的表征表明,h+和·OH参与了TC和CIP的光催化降解。本研究为吸附和光催化降解协同作用的光催化材料的设计提供了新的思路,并为解决日益严峻的环境问题提供了异质结的构建策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design of Bi4O5Br2/g-C3N4 heterojunction for efficient photocatalytic removal of persistent organic pollutants from water

Design of Bi4O5Br2/g-C3N4 heterojunction for efficient photocatalytic removal of persistent organic pollutants from water

Dyes and antibiotics as typical persistent organic pollutants (POPs) are widely present in the environment, but can hardly be removed completely by traditional water treatment methods. Here, we designed Bi4O5Br2/g-C3N4 composite nanosheets for efficient photocatalytic removal of POPs in water. The Bi4O5Br2/g-C3N4 composite with a heterojunction structure exhibited high adsorption and photocatalytic activity for removal of tetracycline (TC) and ciprofloxacin (CIP) with excellent cyclic stability, owing to its large specific surface area as well as enhanced charge separation and visible light utilization. Our characterization revealed that h+ and ·OH are responsible for the photocatalytic degradation of TC and CIP. This work provides insights into the design of photocatalytic materials with synergy of adsorption and photocatalytic degradation, and offers a heterojunction construction strategy for addressing the increasingly severe environmental issues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信