{"title":"k 因子 GARMA 模型的条件平方和估计","authors":"Paul M. Beaumont, Aaron D. Smallwood","doi":"10.1007/s10182-023-00482-y","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze issues related to estimation and inference for the constrained sum of squares estimator (CSS) of the <i>k</i>-factor Gegenbauer autoregressive moving average (GARMA) model. We present theoretical results for the estimator and show that the parameters that determine the cycle lengths are asymptotically independent, converging at rate <i>T</i>, the sample size, for finite cycles. The remaining parameters lack independence and converge at the standard rate. Analogous with existing literature, some challenges exist for testing the hypothesis of non-cyclical long memory, since the associated parameter lies on the boundary of the parameter space. We present simulation results to explore small sample properties of the estimator, which support most distributional results, while also highlighting areas that merit additional exploration. We demonstrate the applicability of the theory and estimator with an application to IBM trading volume.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional sum of squares estimation of k-factor GARMA models\",\"authors\":\"Paul M. Beaumont, Aaron D. Smallwood\",\"doi\":\"10.1007/s10182-023-00482-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyze issues related to estimation and inference for the constrained sum of squares estimator (CSS) of the <i>k</i>-factor Gegenbauer autoregressive moving average (GARMA) model. We present theoretical results for the estimator and show that the parameters that determine the cycle lengths are asymptotically independent, converging at rate <i>T</i>, the sample size, for finite cycles. The remaining parameters lack independence and converge at the standard rate. Analogous with existing literature, some challenges exist for testing the hypothesis of non-cyclical long memory, since the associated parameter lies on the boundary of the parameter space. We present simulation results to explore small sample properties of the estimator, which support most distributional results, while also highlighting areas that merit additional exploration. We demonstrate the applicability of the theory and estimator with an application to IBM trading volume.</p></div>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-023-00482-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-023-00482-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
我们分析了 k 因子格根鲍尔自回归移动平均(GARMA)模型的约束平方和估计器(CSS)的估计和推断相关问题。我们给出了估计器的理论结果,并表明决定周期长度的参数是渐近独立的,在有限周期内以样本大小 T 的速率收敛。其余参数缺乏独立性,以标准速率收敛。与现有文献类似,由于相关参数位于参数空间的边界上,因此在检验非周期性长记忆假设时存在一些挑战。我们展示了模拟结果,以探索估计器的小样本特性,这些结果支持大多数分布结果,同时也强调了值得进一步探索的领域。我们通过对 IBM 交易量的应用证明了理论和估计器的适用性。
Conditional sum of squares estimation of k-factor GARMA models
We analyze issues related to estimation and inference for the constrained sum of squares estimator (CSS) of the k-factor Gegenbauer autoregressive moving average (GARMA) model. We present theoretical results for the estimator and show that the parameters that determine the cycle lengths are asymptotically independent, converging at rate T, the sample size, for finite cycles. The remaining parameters lack independence and converge at the standard rate. Analogous with existing literature, some challenges exist for testing the hypothesis of non-cyclical long memory, since the associated parameter lies on the boundary of the parameter space. We present simulation results to explore small sample properties of the estimator, which support most distributional results, while also highlighting areas that merit additional exploration. We demonstrate the applicability of the theory and estimator with an application to IBM trading volume.
期刊介绍:
AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.