关于随机超图的最大$F_5$ free子超图

IF 0.7 4区 数学 Q2 MATHEMATICS
Igor Araujo, József Balogh, Haoran Luo
{"title":"关于随机超图的最大$F_5$ free子超图","authors":"Igor Araujo, József Balogh, Haoran Luo","doi":"10.37236/11328","DOIUrl":null,"url":null,"abstract":"Denote by $F_5$ the $3$-uniform hypergraph on vertex set $\\{1,2,3,4,5\\}$ with hyperedges $\\{123,124,345\\}$. Balogh, Butterfield, Hu, and Lenz proved that if $p > K \\log n /n$ for some large constant $K$, then every maximum $F_5$-free subhypergraph of $G^3(n,p)$ is tripartite with high probability, and showed that if $p_0 = 0.1\\sqrt{\\log n} /n$, then with high probability there exists a maximum $F_5$-free subhypergraph of $G^3(n,p_0)$ that is not tripartite. In this paper, we sharpen the upper bound to be best possible up to a constant factor. We prove that if $p > C \\sqrt{\\log n} /n $ for some large constant $C$, then every maximum $F_5$-free subhypergraph of $G^3(n, p)$ is tripartite with high probability.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"51 12","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Maximum $F_5$-Free Subhypergraphs of a Random Hypergraph\",\"authors\":\"Igor Araujo, József Balogh, Haoran Luo\",\"doi\":\"10.37236/11328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Denote by $F_5$ the $3$-uniform hypergraph on vertex set $\\\\{1,2,3,4,5\\\\}$ with hyperedges $\\\\{123,124,345\\\\}$. Balogh, Butterfield, Hu, and Lenz proved that if $p > K \\\\log n /n$ for some large constant $K$, then every maximum $F_5$-free subhypergraph of $G^3(n,p)$ is tripartite with high probability, and showed that if $p_0 = 0.1\\\\sqrt{\\\\log n} /n$, then with high probability there exists a maximum $F_5$-free subhypergraph of $G^3(n,p_0)$ that is not tripartite. In this paper, we sharpen the upper bound to be best possible up to a constant factor. We prove that if $p > C \\\\sqrt{\\\\log n} /n $ for some large constant $C$, then every maximum $F_5$-free subhypergraph of $G^3(n, p)$ is tripartite with high probability.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"51 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11328\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11328","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

用$F_5$表示顶点集$\{1,2,3,4,5\}$上具有超边$\{123,124,345\}$的$3$ -一致超图。Balogh, Butterfield, Hu, and Lenz证明了如果$p > K \log n /n$对于某大常数$K$,那么$G^3(n,p)$的每一个极大$F_5$自由子超图都有大概率是三方的,并且证明了如果$p_0 = 0.1\sqrt{\log n} /n$,那么有大概率存在$G^3(n,p_0)$的极大$F_5$自由子超图不是三方的。在本文中,我们锐化上界,使其尽可能达到一个常数因子。证明了如果$p > C \sqrt{\log n} /n $对于某大常数$C$,则$G^3(n, p)$的每一个极大$F_5$自由子超图都是高概率的三部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Maximum $F_5$-Free Subhypergraphs of a Random Hypergraph
Denote by $F_5$ the $3$-uniform hypergraph on vertex set $\{1,2,3,4,5\}$ with hyperedges $\{123,124,345\}$. Balogh, Butterfield, Hu, and Lenz proved that if $p > K \log n /n$ for some large constant $K$, then every maximum $F_5$-free subhypergraph of $G^3(n,p)$ is tripartite with high probability, and showed that if $p_0 = 0.1\sqrt{\log n} /n$, then with high probability there exists a maximum $F_5$-free subhypergraph of $G^3(n,p_0)$ that is not tripartite. In this paper, we sharpen the upper bound to be best possible up to a constant factor. We prove that if $p > C \sqrt{\log n} /n $ for some large constant $C$, then every maximum $F_5$-free subhypergraph of $G^3(n, p)$ is tripartite with high probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信