{"title":"关于随机超图的最大$F_5$ free子超图","authors":"Igor Araujo, József Balogh, Haoran Luo","doi":"10.37236/11328","DOIUrl":null,"url":null,"abstract":"Denote by $F_5$ the $3$-uniform hypergraph on vertex set $\\{1,2,3,4,5\\}$ with hyperedges $\\{123,124,345\\}$. Balogh, Butterfield, Hu, and Lenz proved that if $p > K \\log n /n$ for some large constant $K$, then every maximum $F_5$-free subhypergraph of $G^3(n,p)$ is tripartite with high probability, and showed that if $p_0 = 0.1\\sqrt{\\log n} /n$, then with high probability there exists a maximum $F_5$-free subhypergraph of $G^3(n,p_0)$ that is not tripartite. In this paper, we sharpen the upper bound to be best possible up to a constant factor. We prove that if $p > C \\sqrt{\\log n} /n $ for some large constant $C$, then every maximum $F_5$-free subhypergraph of $G^3(n, p)$ is tripartite with high probability.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"51 12","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Maximum $F_5$-Free Subhypergraphs of a Random Hypergraph\",\"authors\":\"Igor Araujo, József Balogh, Haoran Luo\",\"doi\":\"10.37236/11328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Denote by $F_5$ the $3$-uniform hypergraph on vertex set $\\\\{1,2,3,4,5\\\\}$ with hyperedges $\\\\{123,124,345\\\\}$. Balogh, Butterfield, Hu, and Lenz proved that if $p > K \\\\log n /n$ for some large constant $K$, then every maximum $F_5$-free subhypergraph of $G^3(n,p)$ is tripartite with high probability, and showed that if $p_0 = 0.1\\\\sqrt{\\\\log n} /n$, then with high probability there exists a maximum $F_5$-free subhypergraph of $G^3(n,p_0)$ that is not tripartite. In this paper, we sharpen the upper bound to be best possible up to a constant factor. We prove that if $p > C \\\\sqrt{\\\\log n} /n $ for some large constant $C$, then every maximum $F_5$-free subhypergraph of $G^3(n, p)$ is tripartite with high probability.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"51 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11328\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11328","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
用$F_5$表示顶点集$\{1,2,3,4,5\}$上具有超边$\{123,124,345\}$的$3$ -一致超图。Balogh, Butterfield, Hu, and Lenz证明了如果$p > K \log n /n$对于某大常数$K$,那么$G^3(n,p)$的每一个极大$F_5$自由子超图都有大概率是三方的,并且证明了如果$p_0 = 0.1\sqrt{\log n} /n$,那么有大概率存在$G^3(n,p_0)$的极大$F_5$自由子超图不是三方的。在本文中,我们锐化上界,使其尽可能达到一个常数因子。证明了如果$p > C \sqrt{\log n} /n $对于某大常数$C$,则$G^3(n, p)$的每一个极大$F_5$自由子超图都是高概率的三部。
On the Maximum $F_5$-Free Subhypergraphs of a Random Hypergraph
Denote by $F_5$ the $3$-uniform hypergraph on vertex set $\{1,2,3,4,5\}$ with hyperedges $\{123,124,345\}$. Balogh, Butterfield, Hu, and Lenz proved that if $p > K \log n /n$ for some large constant $K$, then every maximum $F_5$-free subhypergraph of $G^3(n,p)$ is tripartite with high probability, and showed that if $p_0 = 0.1\sqrt{\log n} /n$, then with high probability there exists a maximum $F_5$-free subhypergraph of $G^3(n,p_0)$ that is not tripartite. In this paper, we sharpen the upper bound to be best possible up to a constant factor. We prove that if $p > C \sqrt{\log n} /n $ for some large constant $C$, then every maximum $F_5$-free subhypergraph of $G^3(n, p)$ is tripartite with high probability.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.