关于度界的图的不规则性

IF 0.7 4区 数学 Q2 MATHEMATICS
Dieter Rautenbach, Florian Werner
{"title":"关于度界的图的不规则性","authors":"Dieter Rautenbach, Florian Werner","doi":"10.37236/11948","DOIUrl":null,"url":null,"abstract":"Albertson defined the irregularity of a graph $G$ as $$irr(G)=\\sum\\limits_{uv\\in E(G)}|d_G(u)-d_G(v)|.$$ For a graph $G$ with $n$ vertices, $m$ edges, maximum degree $\\Delta$, and $d=\\left\\lfloor \\frac{\\Delta m}{\\Delta n-m}\\right\\rfloor$, we show $$irr(G)\\leq d(d+1)n+\\frac{1}{\\Delta}\\left(\\Delta^2-(2d+1)\\Delta-d^2-d\\right)m.$$","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"52 10","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irregularity of Graphs Respecting Degree Bounds\",\"authors\":\"Dieter Rautenbach, Florian Werner\",\"doi\":\"10.37236/11948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Albertson defined the irregularity of a graph $G$ as $$irr(G)=\\\\sum\\\\limits_{uv\\\\in E(G)}|d_G(u)-d_G(v)|.$$ For a graph $G$ with $n$ vertices, $m$ edges, maximum degree $\\\\Delta$, and $d=\\\\left\\\\lfloor \\\\frac{\\\\Delta m}{\\\\Delta n-m}\\\\right\\\\rfloor$, we show $$irr(G)\\\\leq d(d+1)n+\\\\frac{1}{\\\\Delta}\\\\left(\\\\Delta^2-(2d+1)\\\\Delta-d^2-d\\\\right)m.$$\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"52 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11948\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11948","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Albertson将图形$G$的不规则性定义为$$irr(G)=\sum\limits_{uv\in E(G)}|d_G(u)-d_G(v)|.$$对于具有$n$顶点、$m$边、最大度数$\Delta$和$d=\left\lfloor \frac{\Delta m}{\Delta n-m}\right\rfloor$的图形$G$,我们显示 $$irr(G)\leq d(d+1)n+\frac{1}{\Delta}\left(\Delta^2-(2d+1)\Delta-d^2-d\right)m.$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irregularity of Graphs Respecting Degree Bounds
Albertson defined the irregularity of a graph $G$ as $$irr(G)=\sum\limits_{uv\in E(G)}|d_G(u)-d_G(v)|.$$ For a graph $G$ with $n$ vertices, $m$ edges, maximum degree $\Delta$, and $d=\left\lfloor \frac{\Delta m}{\Delta n-m}\right\rfloor$, we show $$irr(G)\leq d(d+1)n+\frac{1}{\Delta}\left(\Delta^2-(2d+1)\Delta-d^2-d\right)m.$$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信