Laura Sibylla Endres, Céline Jacquin, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Nikita Kaushal, Oliver Kost, Heather Marie Stoll
{"title":"气候和洞穴环境对水滴荧光有机质的影响及其对石笋荧光层合的影响","authors":"Laura Sibylla Endres, Céline Jacquin, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Nikita Kaushal, Oliver Kost, Heather Marie Stoll","doi":"10.1017/qua.2023.41","DOIUrl":null,"url":null,"abstract":"Abstract Speleothem fluorescence can provide insights into past vegetation dynamics and stalagmite chronology. However, its origin and especially the formation of fluorescent laminations in stalagmites are poorly understood. We conducted a year-long monthly monitoring of drip water fluorescence in La Vallina Cave (northern Iberian Peninsula) and compared the results to drip water chemistry and active speleothems from the same sites. Drip waters were analyzed using fluorescence spectroscopy and parallel factor analysis (PARAFAC). The resulting five-component model indicates contributions from vegetation, microbial activity, and bedrock. Intra-site fluorescence variability is mainly influenced by changes in overlying vegetation, water reservoir time, and respiration rates. Contrary to prevailing views, we find no systematic increase in drip water fluorescence during rainy conditions across drip sites and seasonal variations in drip water fluorescence are absent at a location where present-day speleothem layers form. Our findings challenge the notion of a higher abundance of humic-like fluorescence during the rainy season as the primary cause for layer formation and suggest additional controls on drip water fluorescence, such as bedrock interaction and microbial reprocessing. We also propose that growth rate may control the dilation of the fluorescence signal in stalagmites, indicating other potential mechanisms for fluorescent layer formation.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"28 7","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Climatic and cave settings influence on drip water fluorescent organic matter with implications for fluorescent laminations in stalagmites\",\"authors\":\"Laura Sibylla Endres, Céline Jacquin, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Nikita Kaushal, Oliver Kost, Heather Marie Stoll\",\"doi\":\"10.1017/qua.2023.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Speleothem fluorescence can provide insights into past vegetation dynamics and stalagmite chronology. However, its origin and especially the formation of fluorescent laminations in stalagmites are poorly understood. We conducted a year-long monthly monitoring of drip water fluorescence in La Vallina Cave (northern Iberian Peninsula) and compared the results to drip water chemistry and active speleothems from the same sites. Drip waters were analyzed using fluorescence spectroscopy and parallel factor analysis (PARAFAC). The resulting five-component model indicates contributions from vegetation, microbial activity, and bedrock. Intra-site fluorescence variability is mainly influenced by changes in overlying vegetation, water reservoir time, and respiration rates. Contrary to prevailing views, we find no systematic increase in drip water fluorescence during rainy conditions across drip sites and seasonal variations in drip water fluorescence are absent at a location where present-day speleothem layers form. Our findings challenge the notion of a higher abundance of humic-like fluorescence during the rainy season as the primary cause for layer formation and suggest additional controls on drip water fluorescence, such as bedrock interaction and microbial reprocessing. We also propose that growth rate may control the dilation of the fluorescence signal in stalagmites, indicating other potential mechanisms for fluorescent layer formation.\",\"PeriodicalId\":49643,\"journal\":{\"name\":\"Quaternary Research\",\"volume\":\"28 7\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaternary Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qua.2023.41\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qua.2023.41","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Climatic and cave settings influence on drip water fluorescent organic matter with implications for fluorescent laminations in stalagmites
Abstract Speleothem fluorescence can provide insights into past vegetation dynamics and stalagmite chronology. However, its origin and especially the formation of fluorescent laminations in stalagmites are poorly understood. We conducted a year-long monthly monitoring of drip water fluorescence in La Vallina Cave (northern Iberian Peninsula) and compared the results to drip water chemistry and active speleothems from the same sites. Drip waters were analyzed using fluorescence spectroscopy and parallel factor analysis (PARAFAC). The resulting five-component model indicates contributions from vegetation, microbial activity, and bedrock. Intra-site fluorescence variability is mainly influenced by changes in overlying vegetation, water reservoir time, and respiration rates. Contrary to prevailing views, we find no systematic increase in drip water fluorescence during rainy conditions across drip sites and seasonal variations in drip water fluorescence are absent at a location where present-day speleothem layers form. Our findings challenge the notion of a higher abundance of humic-like fluorescence during the rainy season as the primary cause for layer formation and suggest additional controls on drip water fluorescence, such as bedrock interaction and microbial reprocessing. We also propose that growth rate may control the dilation of the fluorescence signal in stalagmites, indicating other potential mechanisms for fluorescent layer formation.
期刊介绍:
Quaternary Research is an international journal devoted to the advancement of the interdisciplinary understanding of the Quaternary Period. We aim to publish articles of broad interest with relevance to more than one discipline, and that constitute a significant new contribution to Quaternary science. The journal’s scope is global, building on its nearly 50-year history in advancing the understanding of earth and human history through interdisciplinary study of the last 2.6 million years.