{"title":"金属纳米颗粒与细胞色素P450、丙氨酸转氨酶和天冬氨酸转氨酶的相互作用","authors":"Hayat A. Al-Btoush","doi":"10.22207/jpam.17.4.03","DOIUrl":null,"url":null,"abstract":"The use of metallic nanoparticles (NPs) in various industrial and biomedical fields is increasing exponentially. As a result, research examining the potentially toxic impact of these NPs on human health is also increasing. Cytochrome P450 (P450s) enzymes are important for the endogenous and exogenous molecules metabolism. Inhibition or induction of these enzymes affects xenobiotic detoxification and causes clinically significant drug toxicity or therapeutic failures. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are the most frequently used biomarker for liver injury and their induction is an important indicator of hepatotoxicity. This review aims to understand the existing literature relevant to the effect of metallic NPs on P450s, ALT and AST (aminotransferases) enzymes. It was found that the predominant effect of metallic NPs is the inhibition of the CYP 450 gene and protein expression and induction of aminotransferases, which highlights their potential interaction and induction of drug-associated toxicity as well as their hepatotoxicity. However, further studies are recommended to investigate the effect of NPs size, morphology, surface area, charge, and NPs coating on the expression of these enzymes.","PeriodicalId":16968,"journal":{"name":"Journal of Pure and Applied Microbiology","volume":"35 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Interactions between Metallic Nanoparticles and Cytochrome P450, Alanine Aminotransferase, and Aspartate Aminotransferase Enzymes\",\"authors\":\"Hayat A. Al-Btoush\",\"doi\":\"10.22207/jpam.17.4.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of metallic nanoparticles (NPs) in various industrial and biomedical fields is increasing exponentially. As a result, research examining the potentially toxic impact of these NPs on human health is also increasing. Cytochrome P450 (P450s) enzymes are important for the endogenous and exogenous molecules metabolism. Inhibition or induction of these enzymes affects xenobiotic detoxification and causes clinically significant drug toxicity or therapeutic failures. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are the most frequently used biomarker for liver injury and their induction is an important indicator of hepatotoxicity. This review aims to understand the existing literature relevant to the effect of metallic NPs on P450s, ALT and AST (aminotransferases) enzymes. It was found that the predominant effect of metallic NPs is the inhibition of the CYP 450 gene and protein expression and induction of aminotransferases, which highlights their potential interaction and induction of drug-associated toxicity as well as their hepatotoxicity. However, further studies are recommended to investigate the effect of NPs size, morphology, surface area, charge, and NPs coating on the expression of these enzymes.\",\"PeriodicalId\":16968,\"journal\":{\"name\":\"Journal of Pure and Applied Microbiology\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22207/jpam.17.4.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22207/jpam.17.4.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
The Interactions between Metallic Nanoparticles and Cytochrome P450, Alanine Aminotransferase, and Aspartate Aminotransferase Enzymes
The use of metallic nanoparticles (NPs) in various industrial and biomedical fields is increasing exponentially. As a result, research examining the potentially toxic impact of these NPs on human health is also increasing. Cytochrome P450 (P450s) enzymes are important for the endogenous and exogenous molecules metabolism. Inhibition or induction of these enzymes affects xenobiotic detoxification and causes clinically significant drug toxicity or therapeutic failures. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are the most frequently used biomarker for liver injury and their induction is an important indicator of hepatotoxicity. This review aims to understand the existing literature relevant to the effect of metallic NPs on P450s, ALT and AST (aminotransferases) enzymes. It was found that the predominant effect of metallic NPs is the inhibition of the CYP 450 gene and protein expression and induction of aminotransferases, which highlights their potential interaction and induction of drug-associated toxicity as well as their hepatotoxicity. However, further studies are recommended to investigate the effect of NPs size, morphology, surface area, charge, and NPs coating on the expression of these enzymes.
期刊介绍:
Journal of Pure and Applied Microbiology (JPAM) is a peer-reviewed, open access international journal of microbiology aims to advance and disseminate research among scientists, academics, clinicians and microbiologists around the world. JPAM publishes high-quality research in all aspects of microbiology in both online and print form on quarterly basis.