利用扫描电子显微镜成像技术识别周期性纳米结构衬底上的粉尘颗粒

Andrew Tunell, Lauren Micklow, Nichole Scott, Stephen Furst, Chih-Hao Chang
{"title":"利用扫描电子显微镜成像技术识别周期性纳米结构衬底上的粉尘颗粒","authors":"Andrew Tunell, Lauren Micklow, Nichole Scott, Stephen Furst, Chih-Hao Chang","doi":"10.1116/6.0003043","DOIUrl":null,"url":null,"abstract":"Dust-mitigating surfaces typically consist of high-aspect-ratio structures that separate particles from resting on the bulk material, thereby limiting adhesion due to short-range van der Waals forces. These surfaces can find uses in solar-panel coatings and a variety of dust-resistant optics. The current method for quantifying surface contamination is optical microscopy, but this method is inadequate for observing particles at the submicrometer scale due to the diffraction limit. Furthermore, regardless of the microscopy technique, particle identification becomes problematic as the particle contaminates approach the same length scale of the surface structures. In this work, we demonstrate a method to identify micro-/nanoparticle contaminates on nanostructured surfaces using electron microscopy and image processing. This approach allows the characterization of particles that approach the length scale of the surface structures. Image processing, including spectrum filters and edge detection, is used to remove the periodic features of the surface nanostructure to omit them from the particle counting. The detection of these small particles using electron microscopy leads to an average of 5.62 particles/100 μm2 detected compared to 0.63 particles/100 μm2 detected for the traditional confocal optical detection method. Beyond dust-mitigation nanostructures, the demonstrated particle detection technique can find applications in nanobiology, the detection of ice nucleation on a structured surface, and semiconductor mask inspections.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of dust particles on a periodic nanostructured substrate using scanning electron microscope imaging\",\"authors\":\"Andrew Tunell, Lauren Micklow, Nichole Scott, Stephen Furst, Chih-Hao Chang\",\"doi\":\"10.1116/6.0003043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dust-mitigating surfaces typically consist of high-aspect-ratio structures that separate particles from resting on the bulk material, thereby limiting adhesion due to short-range van der Waals forces. These surfaces can find uses in solar-panel coatings and a variety of dust-resistant optics. The current method for quantifying surface contamination is optical microscopy, but this method is inadequate for observing particles at the submicrometer scale due to the diffraction limit. Furthermore, regardless of the microscopy technique, particle identification becomes problematic as the particle contaminates approach the same length scale of the surface structures. In this work, we demonstrate a method to identify micro-/nanoparticle contaminates on nanostructured surfaces using electron microscopy and image processing. This approach allows the characterization of particles that approach the length scale of the surface structures. Image processing, including spectrum filters and edge detection, is used to remove the periodic features of the surface nanostructure to omit them from the particle counting. The detection of these small particles using electron microscopy leads to an average of 5.62 particles/100 μm2 detected compared to 0.63 particles/100 μm2 detected for the traditional confocal optical detection method. Beyond dust-mitigation nanostructures, the demonstrated particle detection technique can find applications in nanobiology, the detection of ice nucleation on a structured surface, and semiconductor mask inspections.\",\"PeriodicalId\":17571,\"journal\":{\"name\":\"Journal of Vacuum Science and Technology\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

减尘表面通常由高纵横比结构组成,该结构将颗粒与静止在大块材料上的颗粒分开,从而限制了由于短距离范德华力而产生的粘附。这些表面可以用于太阳能电池板涂层和各种防尘光学器件。目前定量表面污染的方法是光学显微镜,但由于衍射极限,这种方法不适合在亚微米尺度上观察颗粒。此外,无论显微镜技术如何,当颗粒污染接近表面结构的相同长度尺度时,颗粒识别就会成为问题。在这项工作中,我们展示了一种使用电子显微镜和图像处理识别纳米结构表面上微/纳米颗粒污染物的方法。这种方法允许对接近表面结构长度尺度的粒子进行表征。图像处理,包括光谱滤波和边缘检测,用于去除表面纳米结构的周期性特征,从而从粒子计数中忽略它们。利用电子显微镜检测这些小颗粒,平均检测到5.62个粒子/100 μm2,而传统的共聚焦光学检测方法平均检测到0.63个粒子/100 μm2。除了降尘纳米结构之外,所展示的颗粒检测技术还可以应用于纳米生物学、结构表面冰核检测和半导体掩膜检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of dust particles on a periodic nanostructured substrate using scanning electron microscope imaging
Dust-mitigating surfaces typically consist of high-aspect-ratio structures that separate particles from resting on the bulk material, thereby limiting adhesion due to short-range van der Waals forces. These surfaces can find uses in solar-panel coatings and a variety of dust-resistant optics. The current method for quantifying surface contamination is optical microscopy, but this method is inadequate for observing particles at the submicrometer scale due to the diffraction limit. Furthermore, regardless of the microscopy technique, particle identification becomes problematic as the particle contaminates approach the same length scale of the surface structures. In this work, we demonstrate a method to identify micro-/nanoparticle contaminates on nanostructured surfaces using electron microscopy and image processing. This approach allows the characterization of particles that approach the length scale of the surface structures. Image processing, including spectrum filters and edge detection, is used to remove the periodic features of the surface nanostructure to omit them from the particle counting. The detection of these small particles using electron microscopy leads to an average of 5.62 particles/100 μm2 detected compared to 0.63 particles/100 μm2 detected for the traditional confocal optical detection method. Beyond dust-mitigation nanostructures, the demonstrated particle detection technique can find applications in nanobiology, the detection of ice nucleation on a structured surface, and semiconductor mask inspections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信