采用自由曝光和喷墨印刷的全自由度偏振全息图

IF 15.7 Q1 OPTICS
Jianghao Xiong, Haizheng Zhong, Dewen Cheng, Shin-Tson Wu, Yongtian Wang
{"title":"采用自由曝光和喷墨印刷的全自由度偏振全息图","authors":"Jianghao Xiong, Haizheng Zhong, Dewen Cheng, Shin-Tson Wu, Yongtian Wang","doi":"10.1186/s43074-023-00111-6","DOIUrl":null,"url":null,"abstract":"Abstract Since the invention of holography by Dennis Gabor, the fabrication of holograms has mainly relied on direct recording of wavefront by engraving the intensity fringes of interfering electric fields into the holographic material. The degree-of-freedom (DoF) is often limited, especially for its usage as a holographic optical element in imaging or display systems, as what is recorded is what to use. In this work, based on the emerging self-assembled photo-aligned liquid crystal, a polarization hologram with full DoF for local manipulation of optical structure is demonstrated. The ability to record an arbitrary wavefront (in-plane DoF) is achieved by freeform surface exposure, while the local adjustment of deposited liquid crystal (out-of-plane DoF) is realized by inkjet printing. The methodology for designing and fabricating such a hologram is exemplified by building a full-color retinal scanning display without color crosstalk. Here, the arbitrary wavefront modulation capability helps to eliminate the aberrations caused by mismatched exposure and display wavelengths. The local liquid crystal adjustment ability enables the suppression of crosstalk by variation of chiral pitch and film thickness to tune the peak and valley of Bragg diffraction band. The demonstrated method is expected to greatly impact the fields of advanced imaging and display, such as augmented reality and virtual reality, that require optics with an ultrathin form factor and high degrees of design freedom simultaneously.","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"37 1","pages":"0"},"PeriodicalIF":15.7000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing\",\"authors\":\"Jianghao Xiong, Haizheng Zhong, Dewen Cheng, Shin-Tson Wu, Yongtian Wang\",\"doi\":\"10.1186/s43074-023-00111-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Since the invention of holography by Dennis Gabor, the fabrication of holograms has mainly relied on direct recording of wavefront by engraving the intensity fringes of interfering electric fields into the holographic material. The degree-of-freedom (DoF) is often limited, especially for its usage as a holographic optical element in imaging or display systems, as what is recorded is what to use. In this work, based on the emerging self-assembled photo-aligned liquid crystal, a polarization hologram with full DoF for local manipulation of optical structure is demonstrated. The ability to record an arbitrary wavefront (in-plane DoF) is achieved by freeform surface exposure, while the local adjustment of deposited liquid crystal (out-of-plane DoF) is realized by inkjet printing. The methodology for designing and fabricating such a hologram is exemplified by building a full-color retinal scanning display without color crosstalk. Here, the arbitrary wavefront modulation capability helps to eliminate the aberrations caused by mismatched exposure and display wavelengths. The local liquid crystal adjustment ability enables the suppression of crosstalk by variation of chiral pitch and film thickness to tune the peak and valley of Bragg diffraction band. The demonstrated method is expected to greatly impact the fields of advanced imaging and display, such as augmented reality and virtual reality, that require optics with an ultrathin form factor and high degrees of design freedom simultaneously.\",\"PeriodicalId\":93483,\"journal\":{\"name\":\"PhotoniX\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PhotoniX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43074-023-00111-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-023-00111-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要自Dennis Gabor发明全息术以来,全息图的制作主要依靠在全息材料上雕刻干涉电场的强度条纹来直接记录波前。自由度(DoF)通常是有限的,特别是在成像或显示系统中作为全息光学元件的使用,因为记录的是要使用的。本文基于新兴的自组装光定向液晶,展示了一种用于光学结构局部操纵的全自由度偏振全息图。通过自由曲面曝光实现任意波前记录(面内自由度),而通过喷墨打印实现沉积液晶的局部调整(面外自由度)。通过构建无彩色串扰的全彩视网膜扫描显示器,举例说明了设计和制造这种全息图的方法。在这里,任意波前调制能力有助于消除由不匹配的曝光和显示波长引起的像差。液晶的局部调节能力可以通过改变手性间距和薄膜厚度来抑制串扰,从而调节布拉格衍射带的峰谷。所展示的方法预计将极大地影响先进的成像和显示领域,如增强现实和虚拟现实,这需要光学器件具有超薄的外形因素和高度的设计自由度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing

Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing
Abstract Since the invention of holography by Dennis Gabor, the fabrication of holograms has mainly relied on direct recording of wavefront by engraving the intensity fringes of interfering electric fields into the holographic material. The degree-of-freedom (DoF) is often limited, especially for its usage as a holographic optical element in imaging or display systems, as what is recorded is what to use. In this work, based on the emerging self-assembled photo-aligned liquid crystal, a polarization hologram with full DoF for local manipulation of optical structure is demonstrated. The ability to record an arbitrary wavefront (in-plane DoF) is achieved by freeform surface exposure, while the local adjustment of deposited liquid crystal (out-of-plane DoF) is realized by inkjet printing. The methodology for designing and fabricating such a hologram is exemplified by building a full-color retinal scanning display without color crosstalk. Here, the arbitrary wavefront modulation capability helps to eliminate the aberrations caused by mismatched exposure and display wavelengths. The local liquid crystal adjustment ability enables the suppression of crosstalk by variation of chiral pitch and film thickness to tune the peak and valley of Bragg diffraction band. The demonstrated method is expected to greatly impact the fields of advanced imaging and display, such as augmented reality and virtual reality, that require optics with an ultrathin form factor and high degrees of design freedom simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信