活塞弹簧运动与粘性气体相互作用模型系统分析

IF 1 3区 数学 Q1 MATHEMATICS
Sabrine Chebbi, Václav Mácha, Šárka Nečasová
{"title":"活塞弹簧运动与粘性气体相互作用模型系统分析","authors":"Sabrine Chebbi,&nbsp;Václav Mácha,&nbsp;Šárka Nečasová","doi":"10.1007/s10231-023-01386-z","DOIUrl":null,"url":null,"abstract":"<div><p>We are concerned with a one-dimensional flow of a compressible fluid which may be seen as a simplification of the flow of fluid in a long thin pipe. We assume that the pipe is on one side ended by a spring. The other side of the pipe is let open—there we assume either inflow or outflow boundary conditions. Such situation can be understood as a toy model for human lungs. We tackle the question of uniqueness and existence of a strong solution for a system modeling the above process, special emphasis is laid upon the estimate of the maximal time of existence.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a system modeling the interaction between the motion of piston-spring and a viscous gas\",\"authors\":\"Sabrine Chebbi,&nbsp;Václav Mácha,&nbsp;Šárka Nečasová\",\"doi\":\"10.1007/s10231-023-01386-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We are concerned with a one-dimensional flow of a compressible fluid which may be seen as a simplification of the flow of fluid in a long thin pipe. We assume that the pipe is on one side ended by a spring. The other side of the pipe is let open—there we assume either inflow or outflow boundary conditions. Such situation can be understood as a toy model for human lungs. We tackle the question of uniqueness and existence of a strong solution for a system modeling the above process, special emphasis is laid upon the estimate of the maximal time of existence.\\n</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01386-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01386-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们关注的是可压缩流体的一维流动,它可以看作是细长管道中流体流动的简化。我们假设管道的一侧以弹簧为端点。管道的另一侧是开放的,我们假设这里有流入或流出的边界条件。这种情况可以理解为人类肺部的玩具模型。我们要解决的问题是,模拟上述过程的系统的唯一性和强解的存在性,特别强调对最大存在时间的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a system modeling the interaction between the motion of piston-spring and a viscous gas

We are concerned with a one-dimensional flow of a compressible fluid which may be seen as a simplification of the flow of fluid in a long thin pipe. We assume that the pipe is on one side ended by a spring. The other side of the pipe is let open—there we assume either inflow or outflow boundary conditions. Such situation can be understood as a toy model for human lungs. We tackle the question of uniqueness and existence of a strong solution for a system modeling the above process, special emphasis is laid upon the estimate of the maximal time of existence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信