能量选择器的设计与分析

IF 1.4 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kun Yan, Yi Wang, Xiaofan Min, Lei Tang, Yu Xia, You Li
{"title":"能量选择器的设计与分析","authors":"Kun Yan, Yi Wang, Xiaofan Min, Lei Tang, Yu Xia, You Li","doi":"10.1017/s1759078723001058","DOIUrl":null,"url":null,"abstract":"Abstract By combining the technique of energy selective surface and frequency selective rasorber, an energy selective rasorber is proposed, which performs selective energy protection in the low communication frequency band (0.8–2 GHz) and wave-absorbing property in the high-frequency band (6–18 GHz). The design consists of two layers, of which the bottom one contains a lumped diode structure for energy selection function in the transmission band, while together with the top layer, they perform a wideband wave absorbing function. The simulated and measured results agree well with each other, and both show good absorption in 6–18 GHz and energy-selective property around 1.86 GHz. That is, when the incident power changes from −30 to 14 dBm, the reflection coefficient changes from below −22 dB to above −2 dB, while the transmission coefficient changes from above −3 dB to below −17 dB.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of an energy selective\",\"authors\":\"Kun Yan, Yi Wang, Xiaofan Min, Lei Tang, Yu Xia, You Li\",\"doi\":\"10.1017/s1759078723001058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract By combining the technique of energy selective surface and frequency selective rasorber, an energy selective rasorber is proposed, which performs selective energy protection in the low communication frequency band (0.8–2 GHz) and wave-absorbing property in the high-frequency band (6–18 GHz). The design consists of two layers, of which the bottom one contains a lumped diode structure for energy selection function in the transmission band, while together with the top layer, they perform a wideband wave absorbing function. The simulated and measured results agree well with each other, and both show good absorption in 6–18 GHz and energy-selective property around 1.86 GHz. That is, when the incident power changes from −30 to 14 dBm, the reflection coefficient changes from below −22 dB to above −2 dB, while the transmission coefficient changes from above −3 dB to below −17 dB.\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078723001058\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1759078723001058","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要将能量选择表面和频率选择反射器技术相结合,提出了一种能量选择反射器,该反射器在通信低频段(0.8 ~ 2 GHz)具有选择性能量保护,在高频频段(6 ~ 18 GHz)具有吸波特性。该设计由两层组成,其中底层包含一个集总二极管结构,用于传输波段的能量选择功能,而顶层则具有宽带吸波功能。仿真结果与实测结果吻合良好,在6 ~ 18 GHz范围内具有良好的吸收特性,在1.86 GHz范围内具有良好的能量选择性。也就是说,当入射功率从−30 ~ 14dbm变化时,反射系数从−22 dB以下变化到−2 dB以上,透射系数从−3 dB以上变化到−17 dB以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and analysis of an energy selective
Abstract By combining the technique of energy selective surface and frequency selective rasorber, an energy selective rasorber is proposed, which performs selective energy protection in the low communication frequency band (0.8–2 GHz) and wave-absorbing property in the high-frequency band (6–18 GHz). The design consists of two layers, of which the bottom one contains a lumped diode structure for energy selection function in the transmission band, while together with the top layer, they perform a wideband wave absorbing function. The simulated and measured results agree well with each other, and both show good absorption in 6–18 GHz and energy-selective property around 1.86 GHz. That is, when the incident power changes from −30 to 14 dBm, the reflection coefficient changes from below −22 dB to above −2 dB, while the transmission coefficient changes from above −3 dB to below −17 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Microwave and Wireless Technologies
International Journal of Microwave and Wireless Technologies ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.50
自引率
7.10%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信