{"title":"流变学对骨组织工程用陶瓷支架制备的影响","authors":"Jameer K. Bagwan, Bharatkumar B. Ahuja","doi":"10.1515/ijmr-2022-0245","DOIUrl":null,"url":null,"abstract":"Abstract Bone tissue is the second most affected organ in the human body after blood. Tissue engineering is the area whereby a scaffold is used to regenerate the lost bone. However, the scaffold’s effectiveness is primarily based on the material and the fabrication process. The patient-specific structures are affected because of the fabrication process used to fabricate the scaffold as per requirement. In this regard, rheology plays an important role in the fabrication of the patient-specific scaffold, and it is a study of the flow of ink. This primarily affects both the conventional as well as the non-conventional fabrication processes. In this paper, the scaffold and bone tissue engineering, the different fabrication processes, and the importance of the rheological characterization are presented. In addition to this, the rheological properties of the developed HA/β-TCP composite slurry are evaluated for the extrusion-based additive manufacturing process. The developed ink’s rheological properties show that the flow behavior index of about 0.0497 ± 0.009, minimum flow stress required to make the ink flow of about 51.076 Pa at a strain rate of 0.111 %, and shape retention upto 75 % after 175 s are obtained. Also, different orientations are 3D printed using the developed slurry.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"121 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering\",\"authors\":\"Jameer K. Bagwan, Bharatkumar B. Ahuja\",\"doi\":\"10.1515/ijmr-2022-0245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Bone tissue is the second most affected organ in the human body after blood. Tissue engineering is the area whereby a scaffold is used to regenerate the lost bone. However, the scaffold’s effectiveness is primarily based on the material and the fabrication process. The patient-specific structures are affected because of the fabrication process used to fabricate the scaffold as per requirement. In this regard, rheology plays an important role in the fabrication of the patient-specific scaffold, and it is a study of the flow of ink. This primarily affects both the conventional as well as the non-conventional fabrication processes. In this paper, the scaffold and bone tissue engineering, the different fabrication processes, and the importance of the rheological characterization are presented. In addition to this, the rheological properties of the developed HA/β-TCP composite slurry are evaluated for the extrusion-based additive manufacturing process. The developed ink’s rheological properties show that the flow behavior index of about 0.0497 ± 0.009, minimum flow stress required to make the ink flow of about 51.076 Pa at a strain rate of 0.111 %, and shape retention upto 75 % after 175 s are obtained. Also, different orientations are 3D printed using the developed slurry.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ijmr-2022-0245\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ijmr-2022-0245","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
Abstract Bone tissue is the second most affected organ in the human body after blood. Tissue engineering is the area whereby a scaffold is used to regenerate the lost bone. However, the scaffold’s effectiveness is primarily based on the material and the fabrication process. The patient-specific structures are affected because of the fabrication process used to fabricate the scaffold as per requirement. In this regard, rheology plays an important role in the fabrication of the patient-specific scaffold, and it is a study of the flow of ink. This primarily affects both the conventional as well as the non-conventional fabrication processes. In this paper, the scaffold and bone tissue engineering, the different fabrication processes, and the importance of the rheological characterization are presented. In addition to this, the rheological properties of the developed HA/β-TCP composite slurry are evaluated for the extrusion-based additive manufacturing process. The developed ink’s rheological properties show that the flow behavior index of about 0.0497 ± 0.009, minimum flow stress required to make the ink flow of about 51.076 Pa at a strain rate of 0.111 %, and shape retention upto 75 % after 175 s are obtained. Also, different orientations are 3D printed using the developed slurry.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.