推特网络文本和表情数据的情感分析

Paramita Dey, Soumya Dey
{"title":"推特网络文本和表情数据的情感分析","authors":"Paramita Dey, Soumya Dey","doi":"10.55810/2313-0083.1034","DOIUrl":null,"url":null,"abstract":"Twitter is a social media platform where users can post, read, and interact with 'tweets'. Third party like corporate organization can take advantage of this huge information by collecting data about their customers' opinions. The use of emoticons on social media and the emotions expressed through them are the subjects of this research paper. The purpose of this paper is to present a model for analyzing emotional responses to real-life Twitter data. The proposed model is based on supervised machine learning algorithms and data on has been collected through crawler “TWEEPY” for empirical analysis. Collected data is pre-processed, pruned and fed into various supervised models. Each tweet is assigned to sentiment based on the user's emotions, positive, negative, or neutral.","PeriodicalId":218143,"journal":{"name":"Al-Bahir Journal for Engineering and Pure Sciences","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SENTIMENT ANALYSIS OF TEXT AND EMOJI DATA FOR TWITTER NETWORK\",\"authors\":\"Paramita Dey, Soumya Dey\",\"doi\":\"10.55810/2313-0083.1034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter is a social media platform where users can post, read, and interact with 'tweets'. Third party like corporate organization can take advantage of this huge information by collecting data about their customers' opinions. The use of emoticons on social media and the emotions expressed through them are the subjects of this research paper. The purpose of this paper is to present a model for analyzing emotional responses to real-life Twitter data. The proposed model is based on supervised machine learning algorithms and data on has been collected through crawler “TWEEPY” for empirical analysis. Collected data is pre-processed, pruned and fed into various supervised models. Each tweet is assigned to sentiment based on the user's emotions, positive, negative, or neutral.\",\"PeriodicalId\":218143,\"journal\":{\"name\":\"Al-Bahir Journal for Engineering and Pure Sciences\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Bahir Journal for Engineering and Pure Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55810/2313-0083.1034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Bahir Journal for Engineering and Pure Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55810/2313-0083.1034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推特是一个社交媒体平台,用户可以在这里发布、阅读“推文”,并与之互动。像企业组织这样的第三方可以通过收集有关客户意见的数据来利用这些巨大的信息。emoticon在社交媒体上的使用以及通过它们表达的情绪是本研究论文的主题。本文的目的是提出一个模型来分析对现实生活中的Twitter数据的情绪反应。提出的模型基于监督机器学习算法,并通过爬虫“TWEEPY”收集数据进行实证分析。收集到的数据经过预处理、修剪并输入到各种监督模型中。每条推文都被分配到基于用户情绪的情绪,积极的、消极的或中立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SENTIMENT ANALYSIS OF TEXT AND EMOJI DATA FOR TWITTER NETWORK
Twitter is a social media platform where users can post, read, and interact with 'tweets'. Third party like corporate organization can take advantage of this huge information by collecting data about their customers' opinions. The use of emoticons on social media and the emotions expressed through them are the subjects of this research paper. The purpose of this paper is to present a model for analyzing emotional responses to real-life Twitter data. The proposed model is based on supervised machine learning algorithms and data on has been collected through crawler “TWEEPY” for empirical analysis. Collected data is pre-processed, pruned and fed into various supervised models. Each tweet is assigned to sentiment based on the user's emotions, positive, negative, or neutral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信