{"title":"知识图谱驱动的中小微企业信用风险评估","authors":"Rony Mitra, Ayush Dongre, Piyush Dangare, Adrijit Goswami, Manoj Kumar Tiwari","doi":"10.1080/00207543.2023.2257807","DOIUrl":null,"url":null,"abstract":"Micro, Small, and Medium-sized Enterprises (MSMEs) are essential for the growth and development of the country's economy, as they create jobs, generate income, and foster production and innovation. In recent years, credit risk assessment (CRA) has been an essential process used by financial institutions to evaluate the creditworthiness of MSMEs and determine the likelihood of default. Traditionally, CRA has relied on credit scores and financial statements, but with the advent of machine learning (ML) algorithms, lenders have a new tool at their disposal. By and large, ML algorithms are designed to classify borrowers based on their credit history and transactional data while leveraging the entity relationship involved in credit transactions. This study introduces an innovative knowledge graph-driven credit risk assessment model (RGCN-RF) based on the Relational Graph Convolutional Network (RGCN) and Random Forest (RF) algorithm. RGCN is employed to identify topological structures and relationships, which is currently nascent in traditional credit risk assessment methods. RF categorises MSMEs based on the enterprise embedding vector generated from RGCN. Extensive experimentation is conducted to assess model performance utilising the Indian MSMEs database. The balanced accuracy of 92% obtained using the RGCN-RF model demonstrates a considerable advancement over prior techniques in identifying risk-free enterprises.","PeriodicalId":14307,"journal":{"name":"International Journal of Production Research","volume":"28 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge graph driven credit risk assessment for micro, small and medium-sized enterprises\",\"authors\":\"Rony Mitra, Ayush Dongre, Piyush Dangare, Adrijit Goswami, Manoj Kumar Tiwari\",\"doi\":\"10.1080/00207543.2023.2257807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro, Small, and Medium-sized Enterprises (MSMEs) are essential for the growth and development of the country's economy, as they create jobs, generate income, and foster production and innovation. In recent years, credit risk assessment (CRA) has been an essential process used by financial institutions to evaluate the creditworthiness of MSMEs and determine the likelihood of default. Traditionally, CRA has relied on credit scores and financial statements, but with the advent of machine learning (ML) algorithms, lenders have a new tool at their disposal. By and large, ML algorithms are designed to classify borrowers based on their credit history and transactional data while leveraging the entity relationship involved in credit transactions. This study introduces an innovative knowledge graph-driven credit risk assessment model (RGCN-RF) based on the Relational Graph Convolutional Network (RGCN) and Random Forest (RF) algorithm. RGCN is employed to identify topological structures and relationships, which is currently nascent in traditional credit risk assessment methods. RF categorises MSMEs based on the enterprise embedding vector generated from RGCN. Extensive experimentation is conducted to assess model performance utilising the Indian MSMEs database. The balanced accuracy of 92% obtained using the RGCN-RF model demonstrates a considerable advancement over prior techniques in identifying risk-free enterprises.\",\"PeriodicalId\":14307,\"journal\":{\"name\":\"International Journal of Production Research\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Production Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00207543.2023.2257807\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00207543.2023.2257807","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Knowledge graph driven credit risk assessment for micro, small and medium-sized enterprises
Micro, Small, and Medium-sized Enterprises (MSMEs) are essential for the growth and development of the country's economy, as they create jobs, generate income, and foster production and innovation. In recent years, credit risk assessment (CRA) has been an essential process used by financial institutions to evaluate the creditworthiness of MSMEs and determine the likelihood of default. Traditionally, CRA has relied on credit scores and financial statements, but with the advent of machine learning (ML) algorithms, lenders have a new tool at their disposal. By and large, ML algorithms are designed to classify borrowers based on their credit history and transactional data while leveraging the entity relationship involved in credit transactions. This study introduces an innovative knowledge graph-driven credit risk assessment model (RGCN-RF) based on the Relational Graph Convolutional Network (RGCN) and Random Forest (RF) algorithm. RGCN is employed to identify topological structures and relationships, which is currently nascent in traditional credit risk assessment methods. RF categorises MSMEs based on the enterprise embedding vector generated from RGCN. Extensive experimentation is conducted to assess model performance utilising the Indian MSMEs database. The balanced accuracy of 92% obtained using the RGCN-RF model demonstrates a considerable advancement over prior techniques in identifying risk-free enterprises.
期刊介绍:
The International Journal of Production Research (IJPR), published since 1961, is a well-established, highly successful and leading journal reporting manufacturing, production and operations management research.
IJPR is published 24 times a year and includes papers on innovation management, design of products, manufacturing processes, production and logistics systems. Production economics, the essential behaviour of production resources and systems as well as the complex decision problems that arise in design, management and control of production and logistics systems are considered.
IJPR is a journal for researchers and professors in mechanical engineering, industrial and systems engineering, operations research and management science, and business. It is also an informative reference for industrial managers looking to improve the efficiency and effectiveness of their production systems.