Till Dolejsky, Erik Fitzke, Lucas Bialowons, Maximilian Tippmann, Oleg Nikiforov, Thomas Walther
{"title":"基于纠缠的柔性可重构量子密钥分配网络","authors":"Till Dolejsky, Erik Fitzke, Lucas Bialowons, Maximilian Tippmann, Oleg Nikiforov, Thomas Walther","doi":"10.1140/epjs/s11734-023-00980-9","DOIUrl":null,"url":null,"abstract":"Abstract Recently, we implemented a basic star-shaped entanglement-based quantum key distribution network without trusted nodes. It enables simultaneous pairwise exchange of quantum keys between multiple users. In this paper, we demonstrate its flexibility by focusing on several aspects. We show continuous system operation over a partially deployed 100 km fiber link for multiple days as well as dynamic reconfiguration of the communication partners. The photon pair source enables type-II or type-0 photon pair generation by SPDC as well as various demultiplexing strategies and repetition rates.","PeriodicalId":12221,"journal":{"name":"European Physical Journal-special Topics","volume":"24 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible reconfigurable entanglement-based quantum key distribution network\",\"authors\":\"Till Dolejsky, Erik Fitzke, Lucas Bialowons, Maximilian Tippmann, Oleg Nikiforov, Thomas Walther\",\"doi\":\"10.1140/epjs/s11734-023-00980-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, we implemented a basic star-shaped entanglement-based quantum key distribution network without trusted nodes. It enables simultaneous pairwise exchange of quantum keys between multiple users. In this paper, we demonstrate its flexibility by focusing on several aspects. We show continuous system operation over a partially deployed 100 km fiber link for multiple days as well as dynamic reconfiguration of the communication partners. The photon pair source enables type-II or type-0 photon pair generation by SPDC as well as various demultiplexing strategies and repetition rates.\",\"PeriodicalId\":12221,\"journal\":{\"name\":\"European Physical Journal-special Topics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Physical Journal-special Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjs/s11734-023-00980-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Physical Journal-special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-023-00980-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Flexible reconfigurable entanglement-based quantum key distribution network
Abstract Recently, we implemented a basic star-shaped entanglement-based quantum key distribution network without trusted nodes. It enables simultaneous pairwise exchange of quantum keys between multiple users. In this paper, we demonstrate its flexibility by focusing on several aspects. We show continuous system operation over a partially deployed 100 km fiber link for multiple days as well as dynamic reconfiguration of the communication partners. The photon pair source enables type-II or type-0 photon pair generation by SPDC as well as various demultiplexing strategies and repetition rates.
期刊介绍:
EPJ - Special Topics (EPJ ST) publishes topical issues which are collections of review-type articles or extensive, detailed progress reports. Each issue is focused on a specific subject matter of topical interest.
The journal scope covers the whole spectrum of pure and applied physics, including related subjects such as Materials Science, Physical Biology, Physical Chemistry, and Complex Systems with particular emphasis on interdisciplinary topics in physics and related fields.