{"title":"以氧化锌纳米颗粒、羟丙基壳聚糖和聚乙烯醇为主要成分,具有随需溶解性能的抗菌水胶体复合海绵","authors":"Qun Wang, Xue Zhang, Xin Fang, Luyao Sun, Xianglong Wang, Hong Chen, Ningwen Zhu","doi":"10.1515/polyeng-2023-0024","DOIUrl":null,"url":null,"abstract":"Abstract Effective anti-infection prophylaxis for chronic wounds can reduce the risk of wound infection and improve healing rates. The use of good anti-infection wound dressings is particularly important. In this paper, an antimicrobial composite hydrocolloid sponge dressing with zinc oxide nanoparticles, hydroxypropyl chitosan, and polyvinyl alcohol as the main components was prepared using freeze-drying of the formulated suspensions. The characterizations by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were performed; the antibacterial activity was determined; the on-demand dissolving properties were evaluated; and the basic properties such as porosity, vapor permeability, and water absorption were measured. The results showed that, when the mass ratio of HPCs/PVA was 6:4, the porosity, the steam permeability, the water absorption ratio, and dynamic complete dissolving time in 1 % acetic acid aqueous solution, respectively, reached the optimum value of 63.2 %, 57.7 %, 54.4, and 35 min. Antibacterial activity experiments showed that the sponges significantly inhibited Staphylococcus aureus , Escherichia coli , and Candida albicans . In conclusion, the above results indicate that the prepared hydrocolloid composite sponge has good air permeability, water absorption, antibacterial activity, and on-demand dissolving property and has potential applications in anti-infection treatment of hypo-exudative chronic wounds and pressure sore prevention.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial hydrocolloid composite sponge with on-demand dissolving property, consisting mainly of zinc oxide nanoparticles, hydroxypropyl chitosan, and polyvinyl alcohol\",\"authors\":\"Qun Wang, Xue Zhang, Xin Fang, Luyao Sun, Xianglong Wang, Hong Chen, Ningwen Zhu\",\"doi\":\"10.1515/polyeng-2023-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Effective anti-infection prophylaxis for chronic wounds can reduce the risk of wound infection and improve healing rates. The use of good anti-infection wound dressings is particularly important. In this paper, an antimicrobial composite hydrocolloid sponge dressing with zinc oxide nanoparticles, hydroxypropyl chitosan, and polyvinyl alcohol as the main components was prepared using freeze-drying of the formulated suspensions. The characterizations by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were performed; the antibacterial activity was determined; the on-demand dissolving properties were evaluated; and the basic properties such as porosity, vapor permeability, and water absorption were measured. The results showed that, when the mass ratio of HPCs/PVA was 6:4, the porosity, the steam permeability, the water absorption ratio, and dynamic complete dissolving time in 1 % acetic acid aqueous solution, respectively, reached the optimum value of 63.2 %, 57.7 %, 54.4, and 35 min. Antibacterial activity experiments showed that the sponges significantly inhibited Staphylococcus aureus , Escherichia coli , and Candida albicans . In conclusion, the above results indicate that the prepared hydrocolloid composite sponge has good air permeability, water absorption, antibacterial activity, and on-demand dissolving property and has potential applications in anti-infection treatment of hypo-exudative chronic wounds and pressure sore prevention.\",\"PeriodicalId\":16881,\"journal\":{\"name\":\"Journal of Polymer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/polyeng-2023-0024\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Antimicrobial hydrocolloid composite sponge with on-demand dissolving property, consisting mainly of zinc oxide nanoparticles, hydroxypropyl chitosan, and polyvinyl alcohol
Abstract Effective anti-infection prophylaxis for chronic wounds can reduce the risk of wound infection and improve healing rates. The use of good anti-infection wound dressings is particularly important. In this paper, an antimicrobial composite hydrocolloid sponge dressing with zinc oxide nanoparticles, hydroxypropyl chitosan, and polyvinyl alcohol as the main components was prepared using freeze-drying of the formulated suspensions. The characterizations by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were performed; the antibacterial activity was determined; the on-demand dissolving properties were evaluated; and the basic properties such as porosity, vapor permeability, and water absorption were measured. The results showed that, when the mass ratio of HPCs/PVA was 6:4, the porosity, the steam permeability, the water absorption ratio, and dynamic complete dissolving time in 1 % acetic acid aqueous solution, respectively, reached the optimum value of 63.2 %, 57.7 %, 54.4, and 35 min. Antibacterial activity experiments showed that the sponges significantly inhibited Staphylococcus aureus , Escherichia coli , and Candida albicans . In conclusion, the above results indicate that the prepared hydrocolloid composite sponge has good air permeability, water absorption, antibacterial activity, and on-demand dissolving property and has potential applications in anti-infection treatment of hypo-exudative chronic wounds and pressure sore prevention.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.