{"title":"基于密度互斥的葡萄果实田间半监督计数","authors":"Yanan Li, Yuling Tang, Yifei Liu, Dingrun Zheng","doi":"10.34133/plantphenomics.0115","DOIUrl":null,"url":null,"abstract":"Automated counting of grape berries has become one of the most important tasks in grape yield prediction. However, dense distribution of berries and the severe occlusion between berries bring great challenges to counting algorithm based on deep learning. The collection of data required for model training is also a tedious and expensive work. To address these issues and cost-effectively count grape berries, a semi-supervised counting of grape berries in the field based on density mutual exclusion (CDMENet) is proposed. The algorithm uses VGG16 as the backbone to extract image features. Auxiliary tasks based on density mutual exclusion are introduced. The tasks exploit the spatial distribution pattern of grape berries in density levels to make full use of unlabeled data. In addition, a density difference loss is designed. The feature representation is enhanced by amplifying the difference of features between different density levels. The experimental results on the field grape berry dataset show that CDMENet achieves less counting errors. Compared with the state of the arts, coefficient of determination (R2) is improved by 6.10%, and mean absolute error and root mean square error are reduced by 49.36% and 54.08%, respectively. The code is available at https://github.com/youth-tang/CDMENet-main.","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"44 2","pages":"0"},"PeriodicalIF":7.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-supervised Counting of Grape Berries in the Field Based on Density Mutual Exclusion\",\"authors\":\"Yanan Li, Yuling Tang, Yifei Liu, Dingrun Zheng\",\"doi\":\"10.34133/plantphenomics.0115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated counting of grape berries has become one of the most important tasks in grape yield prediction. However, dense distribution of berries and the severe occlusion between berries bring great challenges to counting algorithm based on deep learning. The collection of data required for model training is also a tedious and expensive work. To address these issues and cost-effectively count grape berries, a semi-supervised counting of grape berries in the field based on density mutual exclusion (CDMENet) is proposed. The algorithm uses VGG16 as the backbone to extract image features. Auxiliary tasks based on density mutual exclusion are introduced. The tasks exploit the spatial distribution pattern of grape berries in density levels to make full use of unlabeled data. In addition, a density difference loss is designed. The feature representation is enhanced by amplifying the difference of features between different density levels. The experimental results on the field grape berry dataset show that CDMENet achieves less counting errors. Compared with the state of the arts, coefficient of determination (R2) is improved by 6.10%, and mean absolute error and root mean square error are reduced by 49.36% and 54.08%, respectively. The code is available at https://github.com/youth-tang/CDMENet-main.\",\"PeriodicalId\":20318,\"journal\":{\"name\":\"Plant Phenomics\",\"volume\":\"44 2\",\"pages\":\"0\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Phenomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/plantphenomics.0115\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0115","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Semi-supervised Counting of Grape Berries in the Field Based on Density Mutual Exclusion
Automated counting of grape berries has become one of the most important tasks in grape yield prediction. However, dense distribution of berries and the severe occlusion between berries bring great challenges to counting algorithm based on deep learning. The collection of data required for model training is also a tedious and expensive work. To address these issues and cost-effectively count grape berries, a semi-supervised counting of grape berries in the field based on density mutual exclusion (CDMENet) is proposed. The algorithm uses VGG16 as the backbone to extract image features. Auxiliary tasks based on density mutual exclusion are introduced. The tasks exploit the spatial distribution pattern of grape berries in density levels to make full use of unlabeled data. In addition, a density difference loss is designed. The feature representation is enhanced by amplifying the difference of features between different density levels. The experimental results on the field grape berry dataset show that CDMENet achieves less counting errors. Compared with the state of the arts, coefficient of determination (R2) is improved by 6.10%, and mean absolute error and root mean square error are reduced by 49.36% and 54.08%, respectively. The code is available at https://github.com/youth-tang/CDMENet-main.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.