Ayyoub Zeghlache, Hemza Mekki, Ali Djerioui, Mohamed Fouad Benkhoris
{"title":"消磁故障下表面永磁同步电机主动容错控制","authors":"Ayyoub Zeghlache, Hemza Mekki, Ali Djerioui, Mohamed Fouad Benkhoris","doi":"10.3311/ppee.22464","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel method for controlling a surface permanent magnet synchronous motor (SPMSM) during demagnetization fault conditions. The proposed fault-tolerant control (FTC) system incorporates a combination of a fuzzy extended state observer (FESO) based on an interval type 2 fuzzy logic controller (IT2FLC) and second-order sliding mode control (SOSMC) utilizing the super-twisting algorithm. The FESO aims to identify and eliminate demagnetization faults through reconstruction control. The FTC system enhances the dynamic performance and disturbance rejection of the SPMSM, providing a robust solution in the event of a demagnetization fault.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"30 121","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Fault-tolerant Control for Surface Permanent Magnet Synchronous Motor Under Demagnetization Fault\",\"authors\":\"Ayyoub Zeghlache, Hemza Mekki, Ali Djerioui, Mohamed Fouad Benkhoris\",\"doi\":\"10.3311/ppee.22464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel method for controlling a surface permanent magnet synchronous motor (SPMSM) during demagnetization fault conditions. The proposed fault-tolerant control (FTC) system incorporates a combination of a fuzzy extended state observer (FESO) based on an interval type 2 fuzzy logic controller (IT2FLC) and second-order sliding mode control (SOSMC) utilizing the super-twisting algorithm. The FESO aims to identify and eliminate demagnetization faults through reconstruction control. The FTC system enhances the dynamic performance and disturbance rejection of the SPMSM, providing a robust solution in the event of a demagnetization fault.\",\"PeriodicalId\":37664,\"journal\":{\"name\":\"Periodica polytechnica Electrical engineering and computer science\",\"volume\":\"30 121\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica polytechnica Electrical engineering and computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppee.22464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.22464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Active Fault-tolerant Control for Surface Permanent Magnet Synchronous Motor Under Demagnetization Fault
This paper introduces a novel method for controlling a surface permanent magnet synchronous motor (SPMSM) during demagnetization fault conditions. The proposed fault-tolerant control (FTC) system incorporates a combination of a fuzzy extended state observer (FESO) based on an interval type 2 fuzzy logic controller (IT2FLC) and second-order sliding mode control (SOSMC) utilizing the super-twisting algorithm. The FESO aims to identify and eliminate demagnetization faults through reconstruction control. The FTC system enhances the dynamic performance and disturbance rejection of the SPMSM, providing a robust solution in the event of a demagnetization fault.
期刊介绍:
The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).