收缩调整夏普比率的实际应用:一种改进的共同基金选择方法

Moshe Levy, Richard Roll
{"title":"收缩调整夏普比率的实际应用:一种改进的共同基金选择方法","authors":"Moshe Levy, Richard Roll","doi":"10.3905/pa.2023.pa573","DOIUrl":null,"url":null,"abstract":"In <ext-link><bold><italic>The Shrinkage-Adjusted Sharpe Ratio: An Improved Method for Mutual Fund Selection</italic></bold></ext-link>, from the February 2023 issue of <bold><italic>The Journal of Investing</italic></bold>, <bold>Moshe Levy</bold> of <bold>Hebrew University</bold> and <bold>Richard Roll</bold> of <bold>Caltech</bold> introduce a metric for predicting US equity mutual fund performance that significantly outperforms the simple Shape ratio. They call their metric the “shrinkage-adjusted Sharpe ratio” (SAS) because it uses two adjustment factors to shrink past performance measures (e.g., average returns of an individual fund) toward their cross-sectional means (i.e., toward the average return of all funds). The adjustment factors apply to a fund’s gross returns but not to its fees. The authors assert that using the SAS rather than a simple Sharpe ratio as a basis for US equity mutual fund selection boosts risk-adjusted returns by roughly 1.1% per annum. The authors apply SAS to different asset classes (foreign equity and fixed-income funds) and time periods. They find that the performance is robust across both.","PeriodicalId":500434,"journal":{"name":"Practical applications of institutional investor journals","volume":"45 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Applications of The Shrinkage-Adjusted Sharpe Ratio: An Improved Method for Mutual Fund Selection\",\"authors\":\"Moshe Levy, Richard Roll\",\"doi\":\"10.3905/pa.2023.pa573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In <ext-link><bold><italic>The Shrinkage-Adjusted Sharpe Ratio: An Improved Method for Mutual Fund Selection</italic></bold></ext-link>, from the February 2023 issue of <bold><italic>The Journal of Investing</italic></bold>, <bold>Moshe Levy</bold> of <bold>Hebrew University</bold> and <bold>Richard Roll</bold> of <bold>Caltech</bold> introduce a metric for predicting US equity mutual fund performance that significantly outperforms the simple Shape ratio. They call their metric the “shrinkage-adjusted Sharpe ratio” (SAS) because it uses two adjustment factors to shrink past performance measures (e.g., average returns of an individual fund) toward their cross-sectional means (i.e., toward the average return of all funds). The adjustment factors apply to a fund’s gross returns but not to its fees. The authors assert that using the SAS rather than a simple Sharpe ratio as a basis for US equity mutual fund selection boosts risk-adjusted returns by roughly 1.1% per annum. The authors apply SAS to different asset classes (foreign equity and fixed-income funds) and time periods. They find that the performance is robust across both.\",\"PeriodicalId\":500434,\"journal\":{\"name\":\"Practical applications of institutional investor journals\",\"volume\":\"45 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Practical applications of institutional investor journals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/pa.2023.pa573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical applications of institutional investor journals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/pa.2023.pa573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在《投资杂志》(The Journal of Investing) 2023年2月刊的《收缩调整夏普比率:一种改进的共同基金选择方法》中,希伯来大学(Hebrew University)的摩西•利维(Moshe Levy)和加州理工学院(Caltech)的理查德•罗尔(Richard Roll)介绍了一个预测美国股票共同基金表现的指标,该指标的表现明显优于简单的夏普比率。他们称他们的指标为“缩水调整夏普比率”(SAS),因为它使用两个调整因素将过去的业绩指标(例如单个基金的平均回报)缩小到其横截面均值(即所有基金的平均回报)。调整因素适用于基金的总回报,但不适用于其费用。作者断言,使用SAS而不是简单的夏普比率作为美国股票共同基金选择的基础,可使风险调整后的回报率每年提高约1.1%。作者将SAS应用于不同的资产类别(外国股票和固定收益基金)和时间段。他们发现,这两种情况的表现都很稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Applications of The Shrinkage-Adjusted Sharpe Ratio: An Improved Method for Mutual Fund Selection
In The Shrinkage-Adjusted Sharpe Ratio: An Improved Method for Mutual Fund Selection, from the February 2023 issue of The Journal of Investing, Moshe Levy of Hebrew University and Richard Roll of Caltech introduce a metric for predicting US equity mutual fund performance that significantly outperforms the simple Shape ratio. They call their metric the “shrinkage-adjusted Sharpe ratio” (SAS) because it uses two adjustment factors to shrink past performance measures (e.g., average returns of an individual fund) toward their cross-sectional means (i.e., toward the average return of all funds). The adjustment factors apply to a fund’s gross returns but not to its fees. The authors assert that using the SAS rather than a simple Sharpe ratio as a basis for US equity mutual fund selection boosts risk-adjusted returns by roughly 1.1% per annum. The authors apply SAS to different asset classes (foreign equity and fixed-income funds) and time periods. They find that the performance is robust across both.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信