关于没有短零和子序列的序列

IF 0.7 4区 数学 Q2 MATHEMATICS
Xiangneng Zeng, Pingzhi Yuan
{"title":"关于没有短零和子序列的序列","authors":"Xiangneng Zeng, Pingzhi Yuan","doi":"10.37236/11963","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite abelian group. It is well known that every sequence $S$ over $G$ of length at least $|G|$ contains a zero-sum subsequence of length at most $\\mathsf{h}(S)$, where $\\mathsf{h}(S)$ is the maximal multiplicity of elements occurring in $S$. It is interesting to study the corresponding inverse problem, that is to find information on the structure of the sequence $S$ which does not contain zero-sum subsequences of length at most $\\mathsf{h}(S)$. Under the assumption that $|\\sum(S)|< \\min\\{|G|,2|S|-1\\}$, Gao, Peng and Wang showed that such a sequence $S$ must be strictly behaving. In the present paper, we explicitly give the structure of such a sequence $S$ under the assumption that $|\\sum(S)|=2|S|-1<|G|$.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"56 20","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Sequences Without Short Zero-Sum Subsequences\",\"authors\":\"Xiangneng Zeng, Pingzhi Yuan\",\"doi\":\"10.37236/11963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a finite abelian group. It is well known that every sequence $S$ over $G$ of length at least $|G|$ contains a zero-sum subsequence of length at most $\\\\mathsf{h}(S)$, where $\\\\mathsf{h}(S)$ is the maximal multiplicity of elements occurring in $S$. It is interesting to study the corresponding inverse problem, that is to find information on the structure of the sequence $S$ which does not contain zero-sum subsequences of length at most $\\\\mathsf{h}(S)$. Under the assumption that $|\\\\sum(S)|< \\\\min\\\\{|G|,2|S|-1\\\\}$, Gao, Peng and Wang showed that such a sequence $S$ must be strictly behaving. In the present paper, we explicitly give the structure of such a sequence $S$ under the assumption that $|\\\\sum(S)|=2|S|-1<|G|$.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"56 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11963\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11963","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $G$ 是一个有限阿贝尔群。众所周知,每一个序列 $S$ 结束 $G$ 至少长度 $|G|$ 最多包含一个零和子序列 $\mathsf{h}(S)$,其中 $\mathsf{h}(S)$ 元素的最大多重性是否出现在 $S$. 研究相应的逆问题是很有趣的,即寻找序列结构的信息 $S$ 哪一种不包含零和子序列 $\mathsf{h}(S)$. 假设是 $|\sum(S)|< \min\{|G|,2|S|-1\}$高、彭和王展示了这样一个序列 $S$ 一定是严守规矩。在本文中,我们明确地给出了这样一个序列的结构 $S$ 假设是 $|\sum(S)|=2|S|-1<|G|$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Sequences Without Short Zero-Sum Subsequences
Let $G$ be a finite abelian group. It is well known that every sequence $S$ over $G$ of length at least $|G|$ contains a zero-sum subsequence of length at most $\mathsf{h}(S)$, where $\mathsf{h}(S)$ is the maximal multiplicity of elements occurring in $S$. It is interesting to study the corresponding inverse problem, that is to find information on the structure of the sequence $S$ which does not contain zero-sum subsequences of length at most $\mathsf{h}(S)$. Under the assumption that $|\sum(S)|< \min\{|G|,2|S|-1\}$, Gao, Peng and Wang showed that such a sequence $S$ must be strictly behaving. In the present paper, we explicitly give the structure of such a sequence $S$ under the assumption that $|\sum(S)|=2|S|-1<|G|$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信