Kristopher G. Klein, Harlan Spence, Olga Alexandrova, Matthew Argall, Lev Arzamasskiy, Jay Bookbinder, Theodore Broeren, Damiano Caprioli, Anthony Case, Benjamin Chandran, Li-Jen Chen, Ivan Dors, Jonathan Eastwood, Colin Forsyth, Antoinette Galvin, Vincent Genot, Jasper Halekas, Michael Hesse, Butler Hine, Tim Horbury, Lan Jian, Justin Kasper, Matthieu Kretzschmar, Matthew Kunz, Benoit Lavraud, Olivier Le Contel, Alfred Mallet, Bennett Maruca, William Matthaeus, Jonathan Niehof, Helen O’Brien, Christopher Owen, Alessandro Retinò, Christopher Reynolds, Owen Roberts, Alexander Schekochihin, Ruth Skoug, Charles Smith, Sonya Smith, John Steinberg, Michael Stevens, Adam Szabo, Jason TenBarge, Roy Torbert, Bernard Vasquez, Daniel Verscharen, Phyllis Whittlesey, Brittany Wickizer, Gary Zank, Ellen Zweibel
{"title":"太阳风:一个多点,多尺度的任务,以表征湍流","authors":"Kristopher G. Klein, Harlan Spence, Olga Alexandrova, Matthew Argall, Lev Arzamasskiy, Jay Bookbinder, Theodore Broeren, Damiano Caprioli, Anthony Case, Benjamin Chandran, Li-Jen Chen, Ivan Dors, Jonathan Eastwood, Colin Forsyth, Antoinette Galvin, Vincent Genot, Jasper Halekas, Michael Hesse, Butler Hine, Tim Horbury, Lan Jian, Justin Kasper, Matthieu Kretzschmar, Matthew Kunz, Benoit Lavraud, Olivier Le Contel, Alfred Mallet, Bennett Maruca, William Matthaeus, Jonathan Niehof, Helen O’Brien, Christopher Owen, Alessandro Retinò, Christopher Reynolds, Owen Roberts, Alexander Schekochihin, Ruth Skoug, Charles Smith, Sonya Smith, John Steinberg, Michael Stevens, Adam Szabo, Jason TenBarge, Roy Torbert, Bernard Vasquez, Daniel Verscharen, Phyllis Whittlesey, Brittany Wickizer, Gary Zank, Ellen Zweibel","doi":"10.1007/s11214-023-01019-0","DOIUrl":null,"url":null,"abstract":"Abstract HelioSwarm (HS) is a NASA Medium-Class Explorer mission of the Heliophysics Division designed to explore the dynamic three-dimensional mechanisms controlling the physics of plasma turbulence, a ubiquitous process occurring in the heliosphere and in plasmas throughout the universe. This will be accomplished by making simultaneous measurements at nine spacecraft with separations spanning magnetohydrodynamic and sub-ion spatial scales in a variety of near-Earth plasmas. In this paper, we describe the scientific background for the HS investigation, the mission goals and objectives, the observatory reference trajectory and instrumentation implementation before the start of Phase B. Through multipoint, multiscale measurements, HS promises to reveal how energy is transferred across scales and boundaries in plasmas throughout the universe.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"HelioSwarm: A Multipoint, Multiscale Mission to Characterize Turbulence\",\"authors\":\"Kristopher G. Klein, Harlan Spence, Olga Alexandrova, Matthew Argall, Lev Arzamasskiy, Jay Bookbinder, Theodore Broeren, Damiano Caprioli, Anthony Case, Benjamin Chandran, Li-Jen Chen, Ivan Dors, Jonathan Eastwood, Colin Forsyth, Antoinette Galvin, Vincent Genot, Jasper Halekas, Michael Hesse, Butler Hine, Tim Horbury, Lan Jian, Justin Kasper, Matthieu Kretzschmar, Matthew Kunz, Benoit Lavraud, Olivier Le Contel, Alfred Mallet, Bennett Maruca, William Matthaeus, Jonathan Niehof, Helen O’Brien, Christopher Owen, Alessandro Retinò, Christopher Reynolds, Owen Roberts, Alexander Schekochihin, Ruth Skoug, Charles Smith, Sonya Smith, John Steinberg, Michael Stevens, Adam Szabo, Jason TenBarge, Roy Torbert, Bernard Vasquez, Daniel Verscharen, Phyllis Whittlesey, Brittany Wickizer, Gary Zank, Ellen Zweibel\",\"doi\":\"10.1007/s11214-023-01019-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract HelioSwarm (HS) is a NASA Medium-Class Explorer mission of the Heliophysics Division designed to explore the dynamic three-dimensional mechanisms controlling the physics of plasma turbulence, a ubiquitous process occurring in the heliosphere and in plasmas throughout the universe. This will be accomplished by making simultaneous measurements at nine spacecraft with separations spanning magnetohydrodynamic and sub-ion spatial scales in a variety of near-Earth plasmas. In this paper, we describe the scientific background for the HS investigation, the mission goals and objectives, the observatory reference trajectory and instrumentation implementation before the start of Phase B. Through multipoint, multiscale measurements, HS promises to reveal how energy is transferred across scales and boundaries in plasmas throughout the universe.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11214-023-01019-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11214-023-01019-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
HelioSwarm: A Multipoint, Multiscale Mission to Characterize Turbulence
Abstract HelioSwarm (HS) is a NASA Medium-Class Explorer mission of the Heliophysics Division designed to explore the dynamic three-dimensional mechanisms controlling the physics of plasma turbulence, a ubiquitous process occurring in the heliosphere and in plasmas throughout the universe. This will be accomplished by making simultaneous measurements at nine spacecraft with separations spanning magnetohydrodynamic and sub-ion spatial scales in a variety of near-Earth plasmas. In this paper, we describe the scientific background for the HS investigation, the mission goals and objectives, the observatory reference trajectory and instrumentation implementation before the start of Phase B. Through multipoint, multiscale measurements, HS promises to reveal how energy is transferred across scales and boundaries in plasmas throughout the universe.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.