{"title":"在小到中等样本量的分级反应模型的项目参数估计中使用辅助项目信息:经验与层次贝叶斯估计","authors":"Matthew Naveiras, Sun-Joo Cho","doi":"10.1177/01466216231209758","DOIUrl":null,"url":null,"abstract":"Marginal maximum likelihood estimation (MMLE) is commonly used for item response theory item parameter estimation. However, sufficiently large sample sizes are not always possible when studying rare populations. In this paper, empirical Bayes and hierarchical Bayes are presented as alternatives to MMLE in small sample sizes, using auxiliary item information to estimate the item parameters of a graded response model with higher accuracy. Empirical Bayes and hierarchical Bayes methods are compared with MMLE to determine under what conditions these Bayes methods can outperform MMLE, and to determine if hierarchical Bayes can act as an acceptable alternative to MMLE in conditions where MMLE is unable to converge. In addition, empirical Bayes and hierarchical Bayes methods are compared to show how hierarchical Bayes can result in estimates of posterior variance with greater accuracy than empirical Bayes by acknowledging the uncertainty of item parameter estimates. The proposed methods were evaluated via a simulation study. Simulation results showed that hierarchical Bayes methods can be acceptable alternatives to MMLE under various testing conditions, and we provide a guideline to indicate which methods would be recommended in different research situations. R functions are provided to implement these proposed methods.","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Auxiliary Item Information in the Item Parameter Estimation of a Graded Response Model for a Small to Medium Sample Size: Empirical Versus Hierarchical Bayes Estimation\",\"authors\":\"Matthew Naveiras, Sun-Joo Cho\",\"doi\":\"10.1177/01466216231209758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marginal maximum likelihood estimation (MMLE) is commonly used for item response theory item parameter estimation. However, sufficiently large sample sizes are not always possible when studying rare populations. In this paper, empirical Bayes and hierarchical Bayes are presented as alternatives to MMLE in small sample sizes, using auxiliary item information to estimate the item parameters of a graded response model with higher accuracy. Empirical Bayes and hierarchical Bayes methods are compared with MMLE to determine under what conditions these Bayes methods can outperform MMLE, and to determine if hierarchical Bayes can act as an acceptable alternative to MMLE in conditions where MMLE is unable to converge. In addition, empirical Bayes and hierarchical Bayes methods are compared to show how hierarchical Bayes can result in estimates of posterior variance with greater accuracy than empirical Bayes by acknowledging the uncertainty of item parameter estimates. The proposed methods were evaluated via a simulation study. Simulation results showed that hierarchical Bayes methods can be acceptable alternatives to MMLE under various testing conditions, and we provide a guideline to indicate which methods would be recommended in different research situations. R functions are provided to implement these proposed methods.\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216231209758\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01466216231209758","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
Using Auxiliary Item Information in the Item Parameter Estimation of a Graded Response Model for a Small to Medium Sample Size: Empirical Versus Hierarchical Bayes Estimation
Marginal maximum likelihood estimation (MMLE) is commonly used for item response theory item parameter estimation. However, sufficiently large sample sizes are not always possible when studying rare populations. In this paper, empirical Bayes and hierarchical Bayes are presented as alternatives to MMLE in small sample sizes, using auxiliary item information to estimate the item parameters of a graded response model with higher accuracy. Empirical Bayes and hierarchical Bayes methods are compared with MMLE to determine under what conditions these Bayes methods can outperform MMLE, and to determine if hierarchical Bayes can act as an acceptable alternative to MMLE in conditions where MMLE is unable to converge. In addition, empirical Bayes and hierarchical Bayes methods are compared to show how hierarchical Bayes can result in estimates of posterior variance with greater accuracy than empirical Bayes by acknowledging the uncertainty of item parameter estimates. The proposed methods were evaluated via a simulation study. Simulation results showed that hierarchical Bayes methods can be acceptable alternatives to MMLE under various testing conditions, and we provide a guideline to indicate which methods would be recommended in different research situations. R functions are provided to implement these proposed methods.
期刊介绍:
Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.