全纯Hörmander-type扇形和条形上的泛函演算

IF 1.2 2区 数学 Q1 MATHEMATICS
Markus Haase, Florian Pannasch
{"title":"全纯Hörmander-type扇形和条形上的泛函演算","authors":"Markus Haase, Florian Pannasch","doi":"10.1090/btran/164","DOIUrl":null,"url":null,"abstract":"In this paper, the abstract multiplier theorems for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-sectorial and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-strip type operators by Kriegler and Weis [Math. Z. 289 (2018), pp. 405–444] are refined and generalized to arbitrary sectorial and strip-type operators. To this end, holomorphic Hörmander-type functions on sectors and strips are introduced, with even a finer scale of smoothness than the classical polynomial scale. Moreover, we establish alternative descriptions of these spaces involving Schwartz and “holomorphic Schwartz” functions. Finally, the abstract results are combined with a result by Carbonaro and Dragičević [Duke Math. J. 166 (2017), pp. 937–974] to obtain an improvement—with respect to the smoothness condition—of the known Hörmander-type multiplier theorem for general symmetric contraction semigroups.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holomorphic Hörmander-type functional calculus on sectors and strips\",\"authors\":\"Markus Haase, Florian Pannasch\",\"doi\":\"10.1090/btran/164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the abstract multiplier theorems for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-sectorial and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-strip type operators by Kriegler and Weis [Math. Z. 289 (2018), pp. 405–444] are refined and generalized to arbitrary sectorial and strip-type operators. To this end, holomorphic Hörmander-type functions on sectors and strips are introduced, with even a finer scale of smoothness than the classical polynomial scale. Moreover, we establish alternative descriptions of these spaces involving Schwartz and “holomorphic Schwartz” functions. Finally, the abstract results are combined with a result by Carbonaro and Dragičević [Duke Math. J. 166 (2017), pp. 937–974] to obtain an improvement—with respect to the smoothness condition—of the known Hörmander-type multiplier theorem for general symmetric contraction semigroups.\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/164\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/164","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了由Kriegler和Weis提出的0 0扇形算子和0 0条形算子的抽象乘子定理。Z. 289 (2018), pp. 405-444]被细化并推广到任意扇形和条形算子。为此,引入了扇形和条形上的全纯Hörmander-type函数,其平滑度比经典多项式尺度更精细。此外,我们建立了涉及Schwartz和“全纯Schwartz”函数的这些空间的替代描述。最后,将抽象结果与Carbonaro和dragi eviki [Duke Math]的结果结合起来。J. 166 (2017), pp. 937-974],以获得关于一般对称收缩半群的已知Hörmander-type乘数定理的光滑条件的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holomorphic Hörmander-type functional calculus on sectors and strips
In this paper, the abstract multiplier theorems for 0 0 -sectorial and 0 0 -strip type operators by Kriegler and Weis [Math. Z. 289 (2018), pp. 405–444] are refined and generalized to arbitrary sectorial and strip-type operators. To this end, holomorphic Hörmander-type functions on sectors and strips are introduced, with even a finer scale of smoothness than the classical polynomial scale. Moreover, we establish alternative descriptions of these spaces involving Schwartz and “holomorphic Schwartz” functions. Finally, the abstract results are combined with a result by Carbonaro and Dragičević [Duke Math. J. 166 (2017), pp. 937–974] to obtain an improvement—with respect to the smoothness condition—of the known Hörmander-type multiplier theorem for general symmetric contraction semigroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信