{"title":"基于FPGA的机器人运动方程并行求解方法","authors":"Deli Zhang, Shaohua Jiang, Liu Zhe","doi":"10.1155/2023/2426982","DOIUrl":null,"url":null,"abstract":"In the implementation of robot motion control, complex kinematic computations consume too much central processing unit (CPU) time and affect the responsiveness of robot motion. To solve this problem, this paper proposes a parallel method for solving kinematic equations of articulated robots based on the coordinate rotation digital computer (CORDIC) algorithm. The method completes the fast calculation of the transcendental function based on the CORDIC algorithm, adopts the tree structure method to optimize the key computational paths of forward and inverse solutions, and designs a parallel pipeline to realize the low latency and high throughput of the kinematic equations. The experiments of the proposed method are validated based on the field-programmable gate array (FPGA) hardware experimental platform, and the experimental results demonstrate that the computational time to complete the entire kinematic equations is 4.68 μs, of which the computational time for the kinematic positive solution is 0.52 μs and the computational time for the kinematic inverse solution is 4.16 μs.","PeriodicalId":51834,"journal":{"name":"Journal of Robotics","volume":"31 20","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Parallel Solving Method of Robot Kinematic Equations Based on FPGA\",\"authors\":\"Deli Zhang, Shaohua Jiang, Liu Zhe\",\"doi\":\"10.1155/2023/2426982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the implementation of robot motion control, complex kinematic computations consume too much central processing unit (CPU) time and affect the responsiveness of robot motion. To solve this problem, this paper proposes a parallel method for solving kinematic equations of articulated robots based on the coordinate rotation digital computer (CORDIC) algorithm. The method completes the fast calculation of the transcendental function based on the CORDIC algorithm, adopts the tree structure method to optimize the key computational paths of forward and inverse solutions, and designs a parallel pipeline to realize the low latency and high throughput of the kinematic equations. The experiments of the proposed method are validated based on the field-programmable gate array (FPGA) hardware experimental platform, and the experimental results demonstrate that the computational time to complete the entire kinematic equations is 4.68 μs, of which the computational time for the kinematic positive solution is 0.52 μs and the computational time for the kinematic inverse solution is 4.16 μs.\",\"PeriodicalId\":51834,\"journal\":{\"name\":\"Journal of Robotics\",\"volume\":\"31 20\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2426982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2426982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
The Parallel Solving Method of Robot Kinematic Equations Based on FPGA
In the implementation of robot motion control, complex kinematic computations consume too much central processing unit (CPU) time and affect the responsiveness of robot motion. To solve this problem, this paper proposes a parallel method for solving kinematic equations of articulated robots based on the coordinate rotation digital computer (CORDIC) algorithm. The method completes the fast calculation of the transcendental function based on the CORDIC algorithm, adopts the tree structure method to optimize the key computational paths of forward and inverse solutions, and designs a parallel pipeline to realize the low latency and high throughput of the kinematic equations. The experiments of the proposed method are validated based on the field-programmable gate array (FPGA) hardware experimental platform, and the experimental results demonstrate that the computational time to complete the entire kinematic equations is 4.68 μs, of which the computational time for the kinematic positive solution is 0.52 μs and the computational time for the kinematic inverse solution is 4.16 μs.
期刊介绍:
Journal of Robotics publishes papers on all aspects automated mechanical devices, from their design and fabrication, to their testing and practical implementation. The journal welcomes submissions from the associated fields of materials science, electrical and computer engineering, and machine learning and artificial intelligence, that contribute towards advances in the technology and understanding of robotic systems.