参数化多量子位泡利门的最优硬件原生分解

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
P V Sriluckshmy, Vicente Pina-Canelles, Mario Ponce, Manuel G Algaba, Fedor Šimkovic IV, Martin Leib
{"title":"参数化多量子位泡利门的最优硬件原生分解","authors":"P V Sriluckshmy, Vicente Pina-Canelles, Mario Ponce, Manuel G Algaba, Fedor Šimkovic IV, Martin Leib","doi":"10.1088/2058-9565/acfa20","DOIUrl":null,"url":null,"abstract":"Abstract We show how to efficiently decompose a parameterized multi-qubit Pauli (PMQP) gate into native parameterized two-qubit Pauli (P2QP) gates minimizing both the circuit depth and the number of P2QP gates. Given a realistic quantum computational model, we argue that the technique is optimal in terms of the number of hardware native gates and the overall depth of the decomposition. Starting from PMQP gate decompositions for the path and star hardware graph, we generalize the procedure to any generic hardware graph and provide exact expressions for the depth and number of P2QP gates of the decomposition. Furthermore, we show how to efficiently combine the decomposition of multiple PMQP gates to further reduce the depth as well as the number of P2QP gates for a combinatorial optimization problem using the Lechner–Hauke–Zoller mapping.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"8 1","pages":"0"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal, hardware native decomposition of parameterized multi-qubit Pauli gates\",\"authors\":\"P V Sriluckshmy, Vicente Pina-Canelles, Mario Ponce, Manuel G Algaba, Fedor Šimkovic IV, Martin Leib\",\"doi\":\"10.1088/2058-9565/acfa20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show how to efficiently decompose a parameterized multi-qubit Pauli (PMQP) gate into native parameterized two-qubit Pauli (P2QP) gates minimizing both the circuit depth and the number of P2QP gates. Given a realistic quantum computational model, we argue that the technique is optimal in terms of the number of hardware native gates and the overall depth of the decomposition. Starting from PMQP gate decompositions for the path and star hardware graph, we generalize the procedure to any generic hardware graph and provide exact expressions for the depth and number of P2QP gates of the decomposition. Furthermore, we show how to efficiently combine the decomposition of multiple PMQP gates to further reduce the depth as well as the number of P2QP gates for a combinatorial optimization problem using the Lechner–Hauke–Zoller mapping.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/acfa20\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-9565/acfa20","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

我们展示了如何有效地将参数化多量子位泡利门(PMQP)分解为本地参数化双量子位泡利门(P2QP),从而最小化电路深度和P2QP门的数量。给定一个现实的量子计算模型,我们认为该技术在硬件原生门的数量和分解的整体深度方面是最佳的。从路径和星形硬件图的PMQP门分解出发,将此过程推广到任何一般硬件图,并给出了分解的P2QP门的深度和个数的精确表达式。此外,我们展示了如何有效地结合多个PMQP门的分解,以进一步减少深度和P2QP门的数量,用于使用lechner - hake - zoller映射的组合优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal, hardware native decomposition of parameterized multi-qubit Pauli gates
Abstract We show how to efficiently decompose a parameterized multi-qubit Pauli (PMQP) gate into native parameterized two-qubit Pauli (P2QP) gates minimizing both the circuit depth and the number of P2QP gates. Given a realistic quantum computational model, we argue that the technique is optimal in terms of the number of hardware native gates and the overall depth of the decomposition. Starting from PMQP gate decompositions for the path and star hardware graph, we generalize the procedure to any generic hardware graph and provide exact expressions for the depth and number of P2QP gates of the decomposition. Furthermore, we show how to efficiently combine the decomposition of multiple PMQP gates to further reduce the depth as well as the number of P2QP gates for a combinatorial optimization problem using the Lechner–Hauke–Zoller mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信