Md. Ashiqur Rahman, Shuhena Salam Aonty, Kaushik Deb, Iqbal H. Sarker
{"title":"基于注意力的人脸年龄估计增强公共安全","authors":"Md. Ashiqur Rahman, Shuhena Salam Aonty, Kaushik Deb, Iqbal H. Sarker","doi":"10.3390/data8100145","DOIUrl":null,"url":null,"abstract":"Age estimation from facial images has gained significant attention due to its practical applications such as public security. However, one of the major challenges faced in this field is the limited availability of comprehensive training data. Moreover, due to the gradual nature of aging, similar-aged faces tend to share similarities despite their race, gender, or location. Recent studies on age estimation utilize convolutional neural networks (CNN), treating every facial region equally and disregarding potentially informative patches that contain age-specific details. Therefore, an attention module can be used to focus extra attention on important patches in the image. In this study, tests are conducted on different attention modules, namely CBAM, SENet, and Self-attention, implemented with a convolutional neural network. The focus is on developing a lightweight model that requires a low number of parameters. A merged dataset and other cutting-edge datasets are used to test the proposed model’s performance. In addition, transfer learning is used alongside the scratch CNN model to achieve optimal performance more efficiently. Experimental results on different aging face databases show the remarkable advantages of the proposed attention-based CNN model over the conventional CNN model by attaining the lowest mean absolute error and the lowest number of parameters with a better cumulative score.","PeriodicalId":36824,"journal":{"name":"Data","volume":"11 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention-Based Human Age Estimation from Face Images to Enhance Public Security\",\"authors\":\"Md. Ashiqur Rahman, Shuhena Salam Aonty, Kaushik Deb, Iqbal H. Sarker\",\"doi\":\"10.3390/data8100145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Age estimation from facial images has gained significant attention due to its practical applications such as public security. However, one of the major challenges faced in this field is the limited availability of comprehensive training data. Moreover, due to the gradual nature of aging, similar-aged faces tend to share similarities despite their race, gender, or location. Recent studies on age estimation utilize convolutional neural networks (CNN), treating every facial region equally and disregarding potentially informative patches that contain age-specific details. Therefore, an attention module can be used to focus extra attention on important patches in the image. In this study, tests are conducted on different attention modules, namely CBAM, SENet, and Self-attention, implemented with a convolutional neural network. The focus is on developing a lightweight model that requires a low number of parameters. A merged dataset and other cutting-edge datasets are used to test the proposed model’s performance. In addition, transfer learning is used alongside the scratch CNN model to achieve optimal performance more efficiently. Experimental results on different aging face databases show the remarkable advantages of the proposed attention-based CNN model over the conventional CNN model by attaining the lowest mean absolute error and the lowest number of parameters with a better cumulative score.\",\"PeriodicalId\":36824,\"journal\":{\"name\":\"Data\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/data8100145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/data8100145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Attention-Based Human Age Estimation from Face Images to Enhance Public Security
Age estimation from facial images has gained significant attention due to its practical applications such as public security. However, one of the major challenges faced in this field is the limited availability of comprehensive training data. Moreover, due to the gradual nature of aging, similar-aged faces tend to share similarities despite their race, gender, or location. Recent studies on age estimation utilize convolutional neural networks (CNN), treating every facial region equally and disregarding potentially informative patches that contain age-specific details. Therefore, an attention module can be used to focus extra attention on important patches in the image. In this study, tests are conducted on different attention modules, namely CBAM, SENet, and Self-attention, implemented with a convolutional neural network. The focus is on developing a lightweight model that requires a low number of parameters. A merged dataset and other cutting-edge datasets are used to test the proposed model’s performance. In addition, transfer learning is used alongside the scratch CNN model to achieve optimal performance more efficiently. Experimental results on different aging face databases show the remarkable advantages of the proposed attention-based CNN model over the conventional CNN model by attaining the lowest mean absolute error and the lowest number of parameters with a better cumulative score.