基于集成的短文本相似度:在真实场景中使用transformer和WordNet的多语言数据集的一种简单方法

IF 3.7 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Isabella Gagliardi, Maria Teresa Artese
{"title":"基于集成的短文本相似度:在真实场景中使用transformer和WordNet的多语言数据集的一种简单方法","authors":"Isabella Gagliardi, Maria Teresa Artese","doi":"10.3390/bdcc7040158","DOIUrl":null,"url":null,"abstract":"When integrating data from different sources, there are problems of synonymy, different languages, and concepts of different granularity. This paper proposes a simple yet effective approach to evaluate the semantic similarity of short texts, especially keywords. The method is capable of matching keywords from different sources and languages by exploiting transformers and WordNet-based methods. Key features of the approach include its unsupervised pipeline, mitigation of the lack of context in keywords, scalability for large archives, support for multiple languages and real-world scenarios adaptation capabilities. The work aims to provide a versatile tool for different cultural heritage archives without requiring complex customization. The paper aims to explore different approaches to identifying similarities in 1- or n-gram tags, evaluate and compare different pre-trained language models, and define integrated methods to overcome limitations. Tests to validate the approach have been conducted using the QueryLab portal, a search engine for cultural heritage archives, to evaluate the proposed pipeline.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":"19 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble-Based Short Text Similarity: An Easy Approach for Multilingual Datasets Using Transformers and WordNet in Real-World Scenarios\",\"authors\":\"Isabella Gagliardi, Maria Teresa Artese\",\"doi\":\"10.3390/bdcc7040158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When integrating data from different sources, there are problems of synonymy, different languages, and concepts of different granularity. This paper proposes a simple yet effective approach to evaluate the semantic similarity of short texts, especially keywords. The method is capable of matching keywords from different sources and languages by exploiting transformers and WordNet-based methods. Key features of the approach include its unsupervised pipeline, mitigation of the lack of context in keywords, scalability for large archives, support for multiple languages and real-world scenarios adaptation capabilities. The work aims to provide a versatile tool for different cultural heritage archives without requiring complex customization. The paper aims to explore different approaches to identifying similarities in 1- or n-gram tags, evaluate and compare different pre-trained language models, and define integrated methods to overcome limitations. Tests to validate the approach have been conducted using the QueryLab portal, a search engine for cultural heritage archives, to evaluate the proposed pipeline.\",\"PeriodicalId\":36397,\"journal\":{\"name\":\"Big Data and Cognitive Computing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/bdcc7040158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7040158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在集成来自不同来源的数据时,存在同义词、不同语言和不同粒度概念的问题。本文提出了一种简单而有效的短文本,尤其是关键词语义相似度评价方法。该方法利用变形器和基于wordnet的方法,能够匹配来自不同来源和语言的关键字。该方法的主要特点包括无监督的管道、减轻关键字缺乏上下文的问题、大型档案的可扩展性、支持多种语言和现实场景适应能力。这项工作旨在为不同的文化遗产档案提供一个多功能的工具,而不需要复杂的定制。本文旨在探索识别1元或n元标签相似性的不同方法,评估和比较不同的预训练语言模型,并定义集成方法以克服局限性。为了验证这一方法,已经使用QueryLab门户网站(一个文化遗产档案搜索引擎)进行了测试,以评估拟议的管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble-Based Short Text Similarity: An Easy Approach for Multilingual Datasets Using Transformers and WordNet in Real-World Scenarios
When integrating data from different sources, there are problems of synonymy, different languages, and concepts of different granularity. This paper proposes a simple yet effective approach to evaluate the semantic similarity of short texts, especially keywords. The method is capable of matching keywords from different sources and languages by exploiting transformers and WordNet-based methods. Key features of the approach include its unsupervised pipeline, mitigation of the lack of context in keywords, scalability for large archives, support for multiple languages and real-world scenarios adaptation capabilities. The work aims to provide a versatile tool for different cultural heritage archives without requiring complex customization. The paper aims to explore different approaches to identifying similarities in 1- or n-gram tags, evaluate and compare different pre-trained language models, and define integrated methods to overcome limitations. Tests to validate the approach have been conducted using the QueryLab portal, a search engine for cultural heritage archives, to evaluate the proposed pipeline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data and Cognitive Computing
Big Data and Cognitive Computing Business, Management and Accounting-Management Information Systems
CiteScore
7.10
自引率
8.10%
发文量
128
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信