{"title":"基于可穿戴光学传感器采集的多通道PPG信号的心脏脉冲传输参数分析","authors":"Jiří Přibil, Anna Přibilová, Ivan Frollo","doi":"10.2478/msr-2023-0028","DOIUrl":null,"url":null,"abstract":"Abstract The article describes the development and testing of a special prototype wearable device consisting of three optical photoplethysmography (PPG) sensors. The functionality of the developed triple PPG sensor was tested under normal laboratory conditions and in a running magnetic resonance imaging (MRI) scanner working with a low magnetic field. The results of the first measurements under normal laboratory conditions show that the obtained mutual positions of systolic/diastolic blood pressure values and heart pulse transmission parameters determined from the PPG waves can be fitted by a line segment with a sufficiently high slope. Measurement experiments inside the open-air MRI tomograph show the practical influence of vibrations and acoustic noise on the cardiac system of the examined persons, which was confirmed by a slight increase in the heart pulse rate and changes in pulse transmission time and pulse wave velocity. We plan to perform further measurements inside the whole-body MRI device producing more intensive vibrations and noise with expected higher stress impact on an exposed person.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"25 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Heart Pulse Transmission Parameters Determined from Multi-Channel PPG Signals Acquired by a Wearable Optical Sensor\",\"authors\":\"Jiří Přibil, Anna Přibilová, Ivan Frollo\",\"doi\":\"10.2478/msr-2023-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The article describes the development and testing of a special prototype wearable device consisting of three optical photoplethysmography (PPG) sensors. The functionality of the developed triple PPG sensor was tested under normal laboratory conditions and in a running magnetic resonance imaging (MRI) scanner working with a low magnetic field. The results of the first measurements under normal laboratory conditions show that the obtained mutual positions of systolic/diastolic blood pressure values and heart pulse transmission parameters determined from the PPG waves can be fitted by a line segment with a sufficiently high slope. Measurement experiments inside the open-air MRI tomograph show the practical influence of vibrations and acoustic noise on the cardiac system of the examined persons, which was confirmed by a slight increase in the heart pulse rate and changes in pulse transmission time and pulse wave velocity. We plan to perform further measurements inside the whole-body MRI device producing more intensive vibrations and noise with expected higher stress impact on an exposed person.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2023-0028\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/msr-2023-0028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Analysis of Heart Pulse Transmission Parameters Determined from Multi-Channel PPG Signals Acquired by a Wearable Optical Sensor
Abstract The article describes the development and testing of a special prototype wearable device consisting of three optical photoplethysmography (PPG) sensors. The functionality of the developed triple PPG sensor was tested under normal laboratory conditions and in a running magnetic resonance imaging (MRI) scanner working with a low magnetic field. The results of the first measurements under normal laboratory conditions show that the obtained mutual positions of systolic/diastolic blood pressure values and heart pulse transmission parameters determined from the PPG waves can be fitted by a line segment with a sufficiently high slope. Measurement experiments inside the open-air MRI tomograph show the practical influence of vibrations and acoustic noise on the cardiac system of the examined persons, which was confirmed by a slight increase in the heart pulse rate and changes in pulse transmission time and pulse wave velocity. We plan to perform further measurements inside the whole-body MRI device producing more intensive vibrations and noise with expected higher stress impact on an exposed person.
期刊介绍:
- theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science