组织空间组学解剖类器官仿生学

IF 2 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Nicholas Zhang, Denis Ohlstrom, Sicheng Pang, Nivik Sanjay Bharadwaj, Aaron Qu, Hans Grossniklaus, Ahmet F. Coskun
{"title":"组织空间组学解剖类器官仿生学","authors":"Nicholas Zhang, Denis Ohlstrom, Sicheng Pang, Nivik Sanjay Bharadwaj, Aaron Qu, Hans Grossniklaus, Ahmet F. Coskun","doi":"10.1089/genbio.2023.0039","DOIUrl":null,"url":null,"abstract":"Recently, organoids, or three-dimensional (3D) cellular assemblies, have demonstrated promise as viable models for organ development and disease study. In contrast to challenging preclinical models, organoids are advantageous due to rapid fabrication times and greater patient specificity. The advent of spatial transcriptomics and single cell technologies has also enhanced the characterization of intraorganoid heterogeneity, thus highlighting 3D cell signaling and organ development at micro scales. In this study, we describe ongoing and future directions in spatial omics integrated with various imaging technologies for two-dimensional/3D organoid characterization. Utilizing both retinal organoids and native retinal tissues, we undertook an analysis to deconstruct the cellular compositions and structural attributes of their respective cell layers. Our findings indicate that the spatial organization of cell phenotypes is similar between organoids and native retinal tissue. However, it is noteworthy that native retinal tissue possesses thinner yet distinctly separated cell layers compared with the organoids.","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"49 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tissue Spatial Omics Dissects Organoid Biomimicry\",\"authors\":\"Nicholas Zhang, Denis Ohlstrom, Sicheng Pang, Nivik Sanjay Bharadwaj, Aaron Qu, Hans Grossniklaus, Ahmet F. Coskun\",\"doi\":\"10.1089/genbio.2023.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, organoids, or three-dimensional (3D) cellular assemblies, have demonstrated promise as viable models for organ development and disease study. In contrast to challenging preclinical models, organoids are advantageous due to rapid fabrication times and greater patient specificity. The advent of spatial transcriptomics and single cell technologies has also enhanced the characterization of intraorganoid heterogeneity, thus highlighting 3D cell signaling and organ development at micro scales. In this study, we describe ongoing and future directions in spatial omics integrated with various imaging technologies for two-dimensional/3D organoid characterization. Utilizing both retinal organoids and native retinal tissues, we undertook an analysis to deconstruct the cellular compositions and structural attributes of their respective cell layers. Our findings indicate that the spatial organization of cell phenotypes is similar between organoids and native retinal tissue. However, it is noteworthy that native retinal tissue possesses thinner yet distinctly separated cell layers compared with the organoids.\",\"PeriodicalId\":73134,\"journal\":{\"name\":\"GEN biotechnology\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GEN biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/genbio.2023.0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEN biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/genbio.2023.0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最近,类器官或三维(3D)细胞组件已被证明有望作为器官发育和疾病研究的可行模型。与具有挑战性的临床前模型相比,类器官由于制造时间短和更大的患者特异性而具有优势。空间转录组学和单细胞技术的出现也增强了类器官内异质性的表征,从而在微观尺度上突出了三维细胞信号传导和器官发育。在这项研究中,我们描述了空间组学与各种二维/三维类器官表征成像技术相结合的当前和未来方向。利用视网膜类器官和天然视网膜组织,我们进行了分析,解构了它们各自细胞层的细胞组成和结构属性。我们的研究结果表明,细胞表型的空间组织在类器官和天然视网膜组织之间是相似的。然而,值得注意的是,与类器官相比,天然视网膜组织具有更薄但明显分离的细胞层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tissue Spatial Omics Dissects Organoid Biomimicry
Recently, organoids, or three-dimensional (3D) cellular assemblies, have demonstrated promise as viable models for organ development and disease study. In contrast to challenging preclinical models, organoids are advantageous due to rapid fabrication times and greater patient specificity. The advent of spatial transcriptomics and single cell technologies has also enhanced the characterization of intraorganoid heterogeneity, thus highlighting 3D cell signaling and organ development at micro scales. In this study, we describe ongoing and future directions in spatial omics integrated with various imaging technologies for two-dimensional/3D organoid characterization. Utilizing both retinal organoids and native retinal tissues, we undertook an analysis to deconstruct the cellular compositions and structural attributes of their respective cell layers. Our findings indicate that the spatial organization of cell phenotypes is similar between organoids and native retinal tissue. However, it is noteworthy that native retinal tissue possesses thinner yet distinctly separated cell layers compared with the organoids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信