{"title":"离散l -代数的几何","authors":"Wolfgang Rump","doi":"10.1515/advgeom-2023-0023","DOIUrl":null,"url":null,"abstract":"Abstract The relationship of discrete L-algebras to projective geometry is deepened and made explicit in several ways. Firstly, a geometric lattice is associated to any discrete L-algebra. Monoids of I-type are obtained as a special case where the perspectivity relation is trivial. Secondly, the structure group of a non-degenerate discrete L-algebra X is determined and shown to be a complete invariant. It is proved that X ∖ {1} is a projective space with an orthogonality relation. A new definition of non-symmetric quantum sets, extending the recursive definition of symmetric quantum sets, is provided and shown to be equivalent to the former one. Quantum sets are characterized as complete projective spaces with an anisotropic duality, and they are also characterized in terms of their complete lattice of closed subspaces, which is one-sided orthomodular and semimodular. For quantum sets of finite cardinality n > 3, a representation as a projective space with duality over a skew-field is given. Quantum sets of cardinality 2 are classified, and the structure group of their associated L-algebra is determined.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"31 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The geometry of discrete <i>L</i>-algebras\",\"authors\":\"Wolfgang Rump\",\"doi\":\"10.1515/advgeom-2023-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The relationship of discrete L-algebras to projective geometry is deepened and made explicit in several ways. Firstly, a geometric lattice is associated to any discrete L-algebra. Monoids of I-type are obtained as a special case where the perspectivity relation is trivial. Secondly, the structure group of a non-degenerate discrete L-algebra X is determined and shown to be a complete invariant. It is proved that X ∖ {1} is a projective space with an orthogonality relation. A new definition of non-symmetric quantum sets, extending the recursive definition of symmetric quantum sets, is provided and shown to be equivalent to the former one. Quantum sets are characterized as complete projective spaces with an anisotropic duality, and they are also characterized in terms of their complete lattice of closed subspaces, which is one-sided orthomodular and semimodular. For quantum sets of finite cardinality n > 3, a representation as a projective space with duality over a skew-field is given. Quantum sets of cardinality 2 are classified, and the structure group of their associated L-algebra is determined.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract The relationship of discrete L-algebras to projective geometry is deepened and made explicit in several ways. Firstly, a geometric lattice is associated to any discrete L-algebra. Monoids of I-type are obtained as a special case where the perspectivity relation is trivial. Secondly, the structure group of a non-degenerate discrete L-algebra X is determined and shown to be a complete invariant. It is proved that X ∖ {1} is a projective space with an orthogonality relation. A new definition of non-symmetric quantum sets, extending the recursive definition of symmetric quantum sets, is provided and shown to be equivalent to the former one. Quantum sets are characterized as complete projective spaces with an anisotropic duality, and they are also characterized in terms of their complete lattice of closed subspaces, which is one-sided orthomodular and semimodular. For quantum sets of finite cardinality n > 3, a representation as a projective space with duality over a skew-field is given. Quantum sets of cardinality 2 are classified, and the structure group of their associated L-algebra is determined.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.