Piet Van Isacker, Alejandro Algora, András Vitéz-Sveiczer, Gábor Gyula Kiss, Sonja Elena Agata Orrigo, Berta Rubio, Pablo Aguilera
{"title":"Gamow-Teller β衰变和伪su(4)对称性","authors":"Piet Van Isacker, Alejandro Algora, András Vitéz-Sveiczer, Gábor Gyula Kiss, Sonja Elena Agata Orrigo, Berta Rubio, Pablo Aguilera","doi":"10.3390/sym15112001","DOIUrl":null,"url":null,"abstract":"We report on recent experimental results on β decay into self-conjugate (N=Z) nuclei with mass number 58≤A≤70. Super-allowed β decays from the Jπ=0+ ground state of a Z=N+2 parent nucleus are to the isobaric analogue state through so-called Fermi transitions and to Jπ=1+ states by way of Gamow–Teller (GT) transitions. The operator of the latter decay is a generator of Wigner’s SU(4) algebra and as a consequence GT transitions obey selection rules associated with this symmetry. Since SU(4) is progressively broken with increasing A, mainly as a consequence of the spin–orbit interaction, this symmetry is not relevant for the nuclei considered here. We argue, however, that the pseudo-spin–orbit splitting can be small in nuclei with 58≤A≤70, in which case nuclear states exhibit an approximate pseudo-SU(4) symmetry. To test this conjecture, GT decay strength is calculated with use of a schematic Hamiltonian with pseudo-SU(4) symmetry. Some generic features of the GT β decay due to pseudo-SU(4) symmetry are pointed out. The experimentally observed GT strength indicates a restoration of pseudo-SU(4) symmetry for A=70.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":"91 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gamow–Teller Beta Decay and Pseudo-SU(4) Symmetry\",\"authors\":\"Piet Van Isacker, Alejandro Algora, András Vitéz-Sveiczer, Gábor Gyula Kiss, Sonja Elena Agata Orrigo, Berta Rubio, Pablo Aguilera\",\"doi\":\"10.3390/sym15112001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on recent experimental results on β decay into self-conjugate (N=Z) nuclei with mass number 58≤A≤70. Super-allowed β decays from the Jπ=0+ ground state of a Z=N+2 parent nucleus are to the isobaric analogue state through so-called Fermi transitions and to Jπ=1+ states by way of Gamow–Teller (GT) transitions. The operator of the latter decay is a generator of Wigner’s SU(4) algebra and as a consequence GT transitions obey selection rules associated with this symmetry. Since SU(4) is progressively broken with increasing A, mainly as a consequence of the spin–orbit interaction, this symmetry is not relevant for the nuclei considered here. We argue, however, that the pseudo-spin–orbit splitting can be small in nuclei with 58≤A≤70, in which case nuclear states exhibit an approximate pseudo-SU(4) symmetry. To test this conjecture, GT decay strength is calculated with use of a schematic Hamiltonian with pseudo-SU(4) symmetry. Some generic features of the GT β decay due to pseudo-SU(4) symmetry are pointed out. The experimentally observed GT strength indicates a restoration of pseudo-SU(4) symmetry for A=70.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15112001\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15112001","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
We report on recent experimental results on β decay into self-conjugate (N=Z) nuclei with mass number 58≤A≤70. Super-allowed β decays from the Jπ=0+ ground state of a Z=N+2 parent nucleus are to the isobaric analogue state through so-called Fermi transitions and to Jπ=1+ states by way of Gamow–Teller (GT) transitions. The operator of the latter decay is a generator of Wigner’s SU(4) algebra and as a consequence GT transitions obey selection rules associated with this symmetry. Since SU(4) is progressively broken with increasing A, mainly as a consequence of the spin–orbit interaction, this symmetry is not relevant for the nuclei considered here. We argue, however, that the pseudo-spin–orbit splitting can be small in nuclei with 58≤A≤70, in which case nuclear states exhibit an approximate pseudo-SU(4) symmetry. To test this conjecture, GT decay strength is calculated with use of a schematic Hamiltonian with pseudo-SU(4) symmetry. Some generic features of the GT β decay due to pseudo-SU(4) symmetry are pointed out. The experimentally observed GT strength indicates a restoration of pseudo-SU(4) symmetry for A=70.
期刊介绍:
Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.