分数ostrowski - mercer型不等式及其应用

IF 2.2 3区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Symmetry-Basel Pub Date : 2023-10-31 DOI:10.3390/sym15112003
Sofia Ramzan, Muhammad Uzair Awan, Miguel Vivas-Cortez, Hüseyin Budak
{"title":"分数ostrowski - mercer型不等式及其应用","authors":"Sofia Ramzan, Muhammad Uzair Awan, Miguel Vivas-Cortez, Hüseyin Budak","doi":"10.3390/sym15112003","DOIUrl":null,"url":null,"abstract":"The objective of this research is to study in detail the fractional variants of Ostrowski–Mercer-type inequalities, specifically for the first and second order differentiable s-convex mappings of the second sense. To obtain the main outcomes of the paper, we leverage the use of conformable fractional integral operators. We also check the numerical validations of the main results. Our findings are also validated through visual representations. Furthermore, we provide a detailed discussion on applications of the obtained results related to special means, q-digamma mappings, and modified Bessel mappings.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":"94 7","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Fractional Ostrowski-Mercer-Type Inequalities and Applications\",\"authors\":\"Sofia Ramzan, Muhammad Uzair Awan, Miguel Vivas-Cortez, Hüseyin Budak\",\"doi\":\"10.3390/sym15112003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this research is to study in detail the fractional variants of Ostrowski–Mercer-type inequalities, specifically for the first and second order differentiable s-convex mappings of the second sense. To obtain the main outcomes of the paper, we leverage the use of conformable fractional integral operators. We also check the numerical validations of the main results. Our findings are also validated through visual representations. Furthermore, we provide a detailed discussion on applications of the obtained results related to special means, q-digamma mappings, and modified Bessel mappings.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":\"94 7\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15112003\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15112003","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是详细研究ostrowski - mercer型不等式的分数型变体,特别是二阶二阶二阶二阶二阶可微s-凸映射。为了得到本文的主要结果,我们利用了符合分数阶积分算子的使用。我们还对主要结果进行了数值验证。我们的发现也通过视觉表征得到了验证。此外,我们还详细讨论了所得结果在特殊均值、q-digamma映射和修正Bessel映射方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Fractional Ostrowski-Mercer-Type Inequalities and Applications
The objective of this research is to study in detail the fractional variants of Ostrowski–Mercer-type inequalities, specifically for the first and second order differentiable s-convex mappings of the second sense. To obtain the main outcomes of the paper, we leverage the use of conformable fractional integral operators. We also check the numerical validations of the main results. Our findings are also validated through visual representations. Furthermore, we provide a detailed discussion on applications of the obtained results related to special means, q-digamma mappings, and modified Bessel mappings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symmetry-Basel
Symmetry-Basel MULTIDISCIPLINARY SCIENCES-
CiteScore
5.40
自引率
11.10%
发文量
2276
审稿时长
14.88 days
期刊介绍: Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信