{"title":"插电式混合动力汽车的效用因子曲线:超越标准假设","authors":"Karim Hamza, Kenneth P. Laberteaux","doi":"10.3390/wevj14110301","DOIUrl":null,"url":null,"abstract":"The utility factor (UF) of a plug-in hybrid electric vehicle (PHEV) refers to the ratio of miles traveled in electric mode to the total miles traveled. Standard UF curves provide a prediction of the expected achievable UF by a PHEV given its all-electric range (AER), but such predictions entail assumptions about both the driving patterns (distance traveled and energy intensity) and charging behavior. Studies have attempted to compare the real-world UF achieved by PHEVs to their standard values, but deviations can stem from deviations in assumptions about: (i) achievable electric range, (ii) travel distance and (iii) charging frequency. In this paper, we derive analytical models for modified utility factor curves as a function of both AER and charging behavior. We show that average charging frequency is insufficient to exactly predict UF but can still estimate bounds. Our generalized model can also provide insights into the efficacy of PHEVs in reducing carbon emissions.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"44 2","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utility Factor Curves for Plug-in Hybrid Electric Vehicles: Beyond the Standard Assumptions\",\"authors\":\"Karim Hamza, Kenneth P. Laberteaux\",\"doi\":\"10.3390/wevj14110301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utility factor (UF) of a plug-in hybrid electric vehicle (PHEV) refers to the ratio of miles traveled in electric mode to the total miles traveled. Standard UF curves provide a prediction of the expected achievable UF by a PHEV given its all-electric range (AER), but such predictions entail assumptions about both the driving patterns (distance traveled and energy intensity) and charging behavior. Studies have attempted to compare the real-world UF achieved by PHEVs to their standard values, but deviations can stem from deviations in assumptions about: (i) achievable electric range, (ii) travel distance and (iii) charging frequency. In this paper, we derive analytical models for modified utility factor curves as a function of both AER and charging behavior. We show that average charging frequency is insufficient to exactly predict UF but can still estimate bounds. Our generalized model can also provide insights into the efficacy of PHEVs in reducing carbon emissions.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":\"44 2\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj14110301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14110301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Utility Factor Curves for Plug-in Hybrid Electric Vehicles: Beyond the Standard Assumptions
The utility factor (UF) of a plug-in hybrid electric vehicle (PHEV) refers to the ratio of miles traveled in electric mode to the total miles traveled. Standard UF curves provide a prediction of the expected achievable UF by a PHEV given its all-electric range (AER), but such predictions entail assumptions about both the driving patterns (distance traveled and energy intensity) and charging behavior. Studies have attempted to compare the real-world UF achieved by PHEVs to their standard values, but deviations can stem from deviations in assumptions about: (i) achievable electric range, (ii) travel distance and (iii) charging frequency. In this paper, we derive analytical models for modified utility factor curves as a function of both AER and charging behavior. We show that average charging frequency is insufficient to exactly predict UF but can still estimate bounds. Our generalized model can also provide insights into the efficacy of PHEVs in reducing carbon emissions.