两平行圆盘间非定常压缩MHD Casson纳米液体流动的半解析解及灵敏度分析

IF 2.6 4区 物理与天体物理 Q2 PHYSICS, APPLIED
J. C. Umavathi, H. Thameem Basha, N. F. M. Noor, F. Kamalov, H. H. Leung, R. Sivaraj
{"title":"两平行圆盘间非定常压缩MHD Casson纳米液体流动的半解析解及灵敏度分析","authors":"J. C. Umavathi, H. Thameem Basha, N. F. M. Noor, F. Kamalov, H. H. Leung, R. Sivaraj","doi":"10.1142/s021797922450396x","DOIUrl":null,"url":null,"abstract":"The transport phenomena of Casson nanofluid flow between two parallel disks subject to convective boundary conditions are analyzed in this paper. The mathematical model incorporates the impact of thermophoresis and Brownian motion since the Buongiorno’s nanoliquid model is adopted to characterize the nanoliquid’s transport features. The appropriate similarity transformations are applied to obtain the resulting nondimensional ordinary differential equations from the basic governing equations. The resulting ordinary differential equations and the associated boundary conditions are solved analytically by adopting the homotopy perturbation technique. Further, a statistical experiment is conducted to identify notable flow parameters which cause significant impact on the heat transfer rate. The characteristics of critical pertinent parameters on the flow field are graphically manifested. It is worth noting that the Casson nanofluid velocity escalates by augmenting the magnetic field parameter in the case of injection near the disks. Nanoparticle concentration is considerably diminished with an increment in thermophoresis parameter. In the cases of equal and unequal Biot numbers, the heat transfer rate is promoted with higher values of the Brownian motion parameter. Among the Casson fluid parameter, squeezing parameter and magnetic field parameter, the heat transfer rate discloses the highest positive sensitivity with the lowest value of the Casson fluid parameter.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"19 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-analytic solutions and sensitivity analysis for an unsteady squeezing MHD Casson nanoliquid flow between two parallel disks\",\"authors\":\"J. C. Umavathi, H. Thameem Basha, N. F. M. Noor, F. Kamalov, H. H. Leung, R. Sivaraj\",\"doi\":\"10.1142/s021797922450396x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transport phenomena of Casson nanofluid flow between two parallel disks subject to convective boundary conditions are analyzed in this paper. The mathematical model incorporates the impact of thermophoresis and Brownian motion since the Buongiorno’s nanoliquid model is adopted to characterize the nanoliquid’s transport features. The appropriate similarity transformations are applied to obtain the resulting nondimensional ordinary differential equations from the basic governing equations. The resulting ordinary differential equations and the associated boundary conditions are solved analytically by adopting the homotopy perturbation technique. Further, a statistical experiment is conducted to identify notable flow parameters which cause significant impact on the heat transfer rate. The characteristics of critical pertinent parameters on the flow field are graphically manifested. It is worth noting that the Casson nanofluid velocity escalates by augmenting the magnetic field parameter in the case of injection near the disks. Nanoparticle concentration is considerably diminished with an increment in thermophoresis parameter. In the cases of equal and unequal Biot numbers, the heat transfer rate is promoted with higher values of the Brownian motion parameter. Among the Casson fluid parameter, squeezing parameter and magnetic field parameter, the heat transfer rate discloses the highest positive sensitivity with the lowest value of the Casson fluid parameter.\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s021797922450396x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021797922450396x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了在对流边界条件下卡森纳米流体在两个平行圆盘间流动的输运现象。由于采用了Buongiorno纳米液体模型来表征纳米液体的输运特征,因此数学模型考虑了热泳动和布朗运动的影响。采用适当的相似变换,由基本控制方程得到无量纲常微分方程。采用同伦摄动技术解析求解得到的常微分方程及其边界条件。此外,还进行了统计实验,以确定对换热速率有显著影响的流动参数。以图形的形式显示了流场中关键相关参数的特征。值得注意的是,在靠近圆盘注入的情况下,卡森纳米流体的速度会随着磁场参数的增大而增大。纳米颗粒浓度随热泳参数的增加而显著降低。在Biot数相等和不相等的情况下,布朗运动参数越高,传热速率越高。在卡森流体参数、挤压参数和磁场参数中,换热率的正灵敏度最高,卡森流体参数的正灵敏度最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-analytic solutions and sensitivity analysis for an unsteady squeezing MHD Casson nanoliquid flow between two parallel disks
The transport phenomena of Casson nanofluid flow between two parallel disks subject to convective boundary conditions are analyzed in this paper. The mathematical model incorporates the impact of thermophoresis and Brownian motion since the Buongiorno’s nanoliquid model is adopted to characterize the nanoliquid’s transport features. The appropriate similarity transformations are applied to obtain the resulting nondimensional ordinary differential equations from the basic governing equations. The resulting ordinary differential equations and the associated boundary conditions are solved analytically by adopting the homotopy perturbation technique. Further, a statistical experiment is conducted to identify notable flow parameters which cause significant impact on the heat transfer rate. The characteristics of critical pertinent parameters on the flow field are graphically manifested. It is worth noting that the Casson nanofluid velocity escalates by augmenting the magnetic field parameter in the case of injection near the disks. Nanoparticle concentration is considerably diminished with an increment in thermophoresis parameter. In the cases of equal and unequal Biot numbers, the heat transfer rate is promoted with higher values of the Brownian motion parameter. Among the Casson fluid parameter, squeezing parameter and magnetic field parameter, the heat transfer rate discloses the highest positive sensitivity with the lowest value of the Casson fluid parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics B
International Journal of Modern Physics B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.80%
发文量
417
审稿时长
3.1 months
期刊介绍: Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信