以precision-p为基数计算第一个单位(ufp)和最后一个单位(ulp) $$\beta $$

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siegfried M. Rump
{"title":"以precision-p为基数计算第一个单位(ufp)和最后一个单位(ulp) $$\\beta $$","authors":"Siegfried M. Rump","doi":"10.1007/s10543-023-00970-2","DOIUrl":null,"url":null,"abstract":"Abstract There are simple algorithms to compute the predecessor, successor, unit in the first place, unit in the last place etc. in binary arithmetic. In this note equally simple algorithms for computing the unit in the first place and the unit in the last place in precision- p base- $$\\beta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>β</mml:mi> </mml:math> arithmetic with $$p \\geqslant 1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> and with $$\\beta \\geqslant 2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> are presented. The algorithms work in the underflow range, and numbers close to overflow are treated by scaling. The algorithms use only the basic operations with directed rounding. If the successor (or predecessor) of a floating-point number is available, an algorithm in rounding to nearest is presented as well.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of the unit in the first place (ufp) and the unit in the last place (ulp) in precision-p base $$\\\\beta $$\",\"authors\":\"Siegfried M. Rump\",\"doi\":\"10.1007/s10543-023-00970-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There are simple algorithms to compute the predecessor, successor, unit in the first place, unit in the last place etc. in binary arithmetic. In this note equally simple algorithms for computing the unit in the first place and the unit in the last place in precision- p base- $$\\\\beta $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>β</mml:mi> </mml:math> arithmetic with $$p \\\\geqslant 1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> and with $$\\\\beta \\\\geqslant 2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> are presented. The algorithms work in the underflow range, and numbers close to overflow are treated by scaling. The algorithms use only the basic operations with directed rounding. If the successor (or predecessor) of a floating-point number is available, an algorithm in rounding to nearest is presented as well.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-023-00970-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10543-023-00970-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在二进制算法中,有计算前位、后位、第一位、最后位等的简单算法。在本说明中,提出了同样简单的算法,用于首先计算单元,并在精度- p基数- $$\beta $$ β算术中使用$$p \geqslant 1$$ p小于或等于1和$$\beta \geqslant 2$$ β小于或等于2。算法工作在底流范围内,接近溢出的数字通过缩放处理。这些算法只使用有向舍入的基本运算。如果浮点数的后继数(或前驱数)是可用的,那么也给出了舍入到最接近的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computation of the unit in the first place (ufp) and the unit in the last place (ulp) in precision-p base $$\beta $$

Computation of the unit in the first place (ufp) and the unit in the last place (ulp) in precision-p base $$\beta $$
Abstract There are simple algorithms to compute the predecessor, successor, unit in the first place, unit in the last place etc. in binary arithmetic. In this note equally simple algorithms for computing the unit in the first place and the unit in the last place in precision- p base- $$\beta $$ β arithmetic with $$p \geqslant 1$$ p 1 and with $$\beta \geqslant 2$$ β 2 are presented. The algorithms work in the underflow range, and numbers close to overflow are treated by scaling. The algorithms use only the basic operations with directed rounding. If the successor (or predecessor) of a floating-point number is available, an algorithm in rounding to nearest is presented as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信