Juana María González Mancebo, Víctor Bello-Rodríguez, Jonay Cubas, Jesús Parada-Díaz, Ángel Bañares-Baudet, Ángel Palomares, José Luís Martín-Esquivel, Marcelino J. del Arco
{"title":"评估两个大洋洲岛屿高山栖息地限制和常见植物物种的全球变暖脆弱性","authors":"Juana María González Mancebo, Víctor Bello-Rodríguez, Jonay Cubas, Jesús Parada-Díaz, Ángel Bañares-Baudet, Ángel Palomares, José Luís Martín-Esquivel, Marcelino J. del Arco","doi":"10.1007/s10531-023-02731-7","DOIUrl":null,"url":null,"abstract":"Abstract Climate change is modifying plant communities and ecosystems around the world. Alpine ecosystems are of special concern on oceanic islands, due to their characteristic higher endemicity percentage, small area and undergoing severe climate change impact in the last few decades. During recent decades there has been increasing interest in the effects of climate change on biodiversity and a range of methods have been developed to assess species vulnerability. However, some new insights are necessary to obtain useful information for species management on oceanic islands. Here in the alpine area of two oceanic islands (Tenerife and La Palma) we evaluate the drivers that best explain the vulnerability of 63 endemic species along three scenarios, covering recent past to present and two future projections (2041–2060 and 2061–2080). The selected drivers were: loss of potential area, mismatch index between potential and occupied areas in different scenarios, and adaptive capacity constraints. We assess the influence of potential area size and whether the drivers of risk and the vulnerability for common, restricted and rare species are significantly different. Our results indicate that management must be widely distributed over the species, and not only focus on restricted species. Evidence for this was that drivers directly deriving from climate change showed no significant differences in their impact on the rarity groups identified. Vulnerability depends partially on the potential area size, showing a more complex picture where constraints on the adaptive capacity of the species have a strong enough influence to modify the effects of the characteristic drivers of climate change.","PeriodicalId":8843,"journal":{"name":"Biodiversity and Conservation","volume":"29 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing global warming vulnerability of restricted and common plant species in alpine habitats on two Oceanic Islands\",\"authors\":\"Juana María González Mancebo, Víctor Bello-Rodríguez, Jonay Cubas, Jesús Parada-Díaz, Ángel Bañares-Baudet, Ángel Palomares, José Luís Martín-Esquivel, Marcelino J. del Arco\",\"doi\":\"10.1007/s10531-023-02731-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Climate change is modifying plant communities and ecosystems around the world. Alpine ecosystems are of special concern on oceanic islands, due to their characteristic higher endemicity percentage, small area and undergoing severe climate change impact in the last few decades. During recent decades there has been increasing interest in the effects of climate change on biodiversity and a range of methods have been developed to assess species vulnerability. However, some new insights are necessary to obtain useful information for species management on oceanic islands. Here in the alpine area of two oceanic islands (Tenerife and La Palma) we evaluate the drivers that best explain the vulnerability of 63 endemic species along three scenarios, covering recent past to present and two future projections (2041–2060 and 2061–2080). The selected drivers were: loss of potential area, mismatch index between potential and occupied areas in different scenarios, and adaptive capacity constraints. We assess the influence of potential area size and whether the drivers of risk and the vulnerability for common, restricted and rare species are significantly different. Our results indicate that management must be widely distributed over the species, and not only focus on restricted species. Evidence for this was that drivers directly deriving from climate change showed no significant differences in their impact on the rarity groups identified. Vulnerability depends partially on the potential area size, showing a more complex picture where constraints on the adaptive capacity of the species have a strong enough influence to modify the effects of the characteristic drivers of climate change.\",\"PeriodicalId\":8843,\"journal\":{\"name\":\"Biodiversity and Conservation\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodiversity and Conservation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10531-023-02731-7\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodiversity and Conservation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10531-023-02731-7","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Assessing global warming vulnerability of restricted and common plant species in alpine habitats on two Oceanic Islands
Abstract Climate change is modifying plant communities and ecosystems around the world. Alpine ecosystems are of special concern on oceanic islands, due to their characteristic higher endemicity percentage, small area and undergoing severe climate change impact in the last few decades. During recent decades there has been increasing interest in the effects of climate change on biodiversity and a range of methods have been developed to assess species vulnerability. However, some new insights are necessary to obtain useful information for species management on oceanic islands. Here in the alpine area of two oceanic islands (Tenerife and La Palma) we evaluate the drivers that best explain the vulnerability of 63 endemic species along three scenarios, covering recent past to present and two future projections (2041–2060 and 2061–2080). The selected drivers were: loss of potential area, mismatch index between potential and occupied areas in different scenarios, and adaptive capacity constraints. We assess the influence of potential area size and whether the drivers of risk and the vulnerability for common, restricted and rare species are significantly different. Our results indicate that management must be widely distributed over the species, and not only focus on restricted species. Evidence for this was that drivers directly deriving from climate change showed no significant differences in their impact on the rarity groups identified. Vulnerability depends partially on the potential area size, showing a more complex picture where constraints on the adaptive capacity of the species have a strong enough influence to modify the effects of the characteristic drivers of climate change.
期刊介绍:
Biodiversity and Conservation is an international journal that publishes articles on all aspects of biological diversity-its description, analysis and conservation, and its controlled rational use by humankind. The scope of Biodiversity and Conservation is wide and multidisciplinary, and embraces all life-forms.
The journal presents research papers, as well as editorials, comments and research notes on biodiversity and conservation, and contributions dealing with the practicalities of conservation management, economic, social and political issues. The journal provides a forum for examining conflicts between sustainable development and human dependence on biodiversity in agriculture, environmental management and biotechnology, and encourages contributions from developing countries to promote broad global perspectives on matters of biodiversity and conservation.