超声环形阵列内部声场分布

IF 0.6 4区 物理与天体物理 Q4 ACOUSTICS
Wiktor Staszewski, Tadeusz Gudra, Krzysztof J. Opielinski
{"title":"超声环形阵列内部声场分布","authors":"Wiktor Staszewski, Tadeusz Gudra, Krzysztof J. Opielinski","doi":"10.24425/123917","DOIUrl":null,"url":null,"abstract":"This paper presents and analyses the results of a simulation of the acoustic field distribution in sectors of a 1024-element ring array, intended for the diagnosis of female breast tissue with the use of ultrasonic tomography. The array was tested for the possibility to equip an ultrasonic tomograph with an additional modality - conventional ultrasonic imaging with the use of individual fragments (sections) of the ring array. To determine the acoustic field for sectors of the ring array with a varying number of activated ultrasonic transducers, a combined sum of all acoustic fields created by each elementary transducer was calculated. By the use of MATLAB software, a unique algorithm was developed, for a numerical determination of the distribution of pressure of an ultrasonic wave on any surface or area of the medium generated by the concave curvilinear structure of rectangular ultrasound transducers with a geometric focus of the beam. The analysis of the obtained results of the acoustic field distribution inside the ultrasonic ring array used in tomography allows to conclude that the optimal number of transducers in a sector enabling to obtain ultrasound images using linear echographic scanning is 32 ≤ $n$ ≤ 128, taking into account that due to an increased temporal resolution of ultrasonic imaging, this number should be as low as possible.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"13 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Acoustic Field Distribution Inside the Ultrasonic Ring Array\",\"authors\":\"Wiktor Staszewski, Tadeusz Gudra, Krzysztof J. Opielinski\",\"doi\":\"10.24425/123917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents and analyses the results of a simulation of the acoustic field distribution in sectors of a 1024-element ring array, intended for the diagnosis of female breast tissue with the use of ultrasonic tomography. The array was tested for the possibility to equip an ultrasonic tomograph with an additional modality - conventional ultrasonic imaging with the use of individual fragments (sections) of the ring array. To determine the acoustic field for sectors of the ring array with a varying number of activated ultrasonic transducers, a combined sum of all acoustic fields created by each elementary transducer was calculated. By the use of MATLAB software, a unique algorithm was developed, for a numerical determination of the distribution of pressure of an ultrasonic wave on any surface or area of the medium generated by the concave curvilinear structure of rectangular ultrasound transducers with a geometric focus of the beam. The analysis of the obtained results of the acoustic field distribution inside the ultrasonic ring array used in tomography allows to conclude that the optimal number of transducers in a sector enabling to obtain ultrasound images using linear echographic scanning is 32 ≤ $n$ ≤ 128, taking into account that due to an increased temporal resolution of ultrasonic imaging, this number should be as low as possible.\",\"PeriodicalId\":8149,\"journal\":{\"name\":\"Archives of Acoustics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/123917\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/123917","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍并分析了用于超声断层扫描诊断女性乳房组织的1024元环形阵列扇区声场分布的模拟结果。对该阵列进行了测试,以确定是否有可能为超声波断层成像仪配备一种额外的方式——使用环形阵列的单个碎片(部分)进行常规超声成像。为了确定具有不同激活数量的超声换能器的环形阵列扇形的声场,计算了每个基本换能器产生的所有声场的总和。利用MATLAB软件,开发了一种独特的算法,用于数值计算具有光束几何焦点的矩形超声换能器凹曲线结构产生的超声波在介质任何表面或区域上的压力分布。通过对用于断层扫描的超声环形阵列内部声场分布的所得结果的分析,可以得出这样的结论:能够使用线性超声扫描获得超声图像的扇区中换能器的最佳数量为32≤$n$≤128,考虑到由于超声成像的时间分辨率增加,该数量应尽可能低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Acoustic Field Distribution Inside the Ultrasonic Ring Array
This paper presents and analyses the results of a simulation of the acoustic field distribution in sectors of a 1024-element ring array, intended for the diagnosis of female breast tissue with the use of ultrasonic tomography. The array was tested for the possibility to equip an ultrasonic tomograph with an additional modality - conventional ultrasonic imaging with the use of individual fragments (sections) of the ring array. To determine the acoustic field for sectors of the ring array with a varying number of activated ultrasonic transducers, a combined sum of all acoustic fields created by each elementary transducer was calculated. By the use of MATLAB software, a unique algorithm was developed, for a numerical determination of the distribution of pressure of an ultrasonic wave on any surface or area of the medium generated by the concave curvilinear structure of rectangular ultrasound transducers with a geometric focus of the beam. The analysis of the obtained results of the acoustic field distribution inside the ultrasonic ring array used in tomography allows to conclude that the optimal number of transducers in a sector enabling to obtain ultrasound images using linear echographic scanning is 32 ≤ $n$ ≤ 128, taking into account that due to an increased temporal resolution of ultrasonic imaging, this number should be as low as possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Acoustics
Archives of Acoustics 物理-声学
CiteScore
1.80
自引率
11.10%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like: acoustical measurements and instrumentation, acoustics of musics, acousto-optics, architectural, building and environmental acoustics, bioacoustics, electroacoustics, linear and nonlinear acoustics, noise and vibration, physical and chemical effects of sound, physiological acoustics, psychoacoustics, quantum acoustics, speech processing and communication systems, speech production and perception, transducers, ultrasonics, underwater acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信