静电纺丝法将动物源性蛋白质副产品转化为新型双层纳米纤维生物材料

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fibers Pub Date : 2023-10-14 DOI:10.3390/fib11100087
Carmen Gaidău, Maria Râpă, Laura Mihaela Stefan, Ecaterina Matei, Andrei Constantin Berbecaru, Cristian Predescu, Liliana Mititelu-Tartau
{"title":"静电纺丝法将动物源性蛋白质副产品转化为新型双层纳米纤维生物材料","authors":"Carmen Gaidău, Maria Râpă, Laura Mihaela Stefan, Ecaterina Matei, Andrei Constantin Berbecaru, Cristian Predescu, Liliana Mititelu-Tartau","doi":"10.3390/fib11100087","DOIUrl":null,"url":null,"abstract":"The aim of this study was to design a dual-layer wound dressing as a new fibrous biomaterial based on the valorization of animal-derived proteins. The first layer was fabricated by the deposition of poly(ethylene oxide) (PEO) loaded with keratin hydrolysate (KH) via a mono-electrospinning process onto a poly(lactic acid) (PLA) film, which was used as a support. The second layer consisted of encapsulating a bovine collagen hydrolysate (CH) into poly(vinyl pyrrolidone) (PVP) through a coaxial electrospinning process, which was added onto the previous layer. This assemblage was characterized by electronic microscopy for morphology and the controlled release of KH. In vitro biocompatibility was evaluated on the L929 (NCTC) murine fibroblasts using quantitative MTT assay and qualitative cell morphological examination after Giemsa staining. Additionally, in vivo biocompatibility methods were used to assess the impact of the biomaterial on white Swiss mice, including the evaluation of hematological, biochemical, and immunological profiles, as well as its impact on oxidative stress. The results revealed a nanofibrous structure for each layer, and the assembled product demonstrated antioxidant activity, controlled release of KH, a high degree of in vitro biocompatibility, negligible hematological and biochemical changes, and minimal impact of certain specific oxidative stress parameters compared to the use of patches with textile support.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":"7 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversion of Animal-Derived Protein By-Products into a New Dual-Layer Nanofiber Biomaterial by Electrospinning Process\",\"authors\":\"Carmen Gaidău, Maria Râpă, Laura Mihaela Stefan, Ecaterina Matei, Andrei Constantin Berbecaru, Cristian Predescu, Liliana Mititelu-Tartau\",\"doi\":\"10.3390/fib11100087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study was to design a dual-layer wound dressing as a new fibrous biomaterial based on the valorization of animal-derived proteins. The first layer was fabricated by the deposition of poly(ethylene oxide) (PEO) loaded with keratin hydrolysate (KH) via a mono-electrospinning process onto a poly(lactic acid) (PLA) film, which was used as a support. The second layer consisted of encapsulating a bovine collagen hydrolysate (CH) into poly(vinyl pyrrolidone) (PVP) through a coaxial electrospinning process, which was added onto the previous layer. This assemblage was characterized by electronic microscopy for morphology and the controlled release of KH. In vitro biocompatibility was evaluated on the L929 (NCTC) murine fibroblasts using quantitative MTT assay and qualitative cell morphological examination after Giemsa staining. Additionally, in vivo biocompatibility methods were used to assess the impact of the biomaterial on white Swiss mice, including the evaluation of hematological, biochemical, and immunological profiles, as well as its impact on oxidative stress. The results revealed a nanofibrous structure for each layer, and the assembled product demonstrated antioxidant activity, controlled release of KH, a high degree of in vitro biocompatibility, negligible hematological and biochemical changes, and minimal impact of certain specific oxidative stress parameters compared to the use of patches with textile support.\",\"PeriodicalId\":12122,\"journal\":{\"name\":\"Fibers\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fib11100087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11100087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是设计一种基于动物源性蛋白增值的双层伤口敷料作为新型纤维生物材料。第一层是通过单静电纺丝工艺将负载角蛋白水解物(KH)的聚环氧乙烷(PEO)沉积在聚乳酸(PLA)薄膜上,并将其作为支撑材料。第二层是通过同轴静电纺丝工艺将牛胶原蛋白水解物(CH)封装到聚乙烯基吡咯烷酮(PVP)中,并将其添加到前一层。用电子显微镜观察了该组合的形态和KH的控释。采用定量MTT法和吉姆萨染色后的定性细胞形态学检查评价L929 (NCTC)小鼠成纤维细胞的体外生物相容性。此外,采用体内生物相容性方法评估生物材料对瑞士白小鼠的影响,包括血液学、生化和免疫学特征的评估,以及对氧化应激的影响。结果显示,每一层都具有纳米纤维结构,组装后的产品具有抗氧化活性,KH释放可控,体外生物相容性高,血液和生化变化可忽略不计,并且与使用带有纺织品支撑的贴片相比,某些特定氧化应激参数的影响最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conversion of Animal-Derived Protein By-Products into a New Dual-Layer Nanofiber Biomaterial by Electrospinning Process
The aim of this study was to design a dual-layer wound dressing as a new fibrous biomaterial based on the valorization of animal-derived proteins. The first layer was fabricated by the deposition of poly(ethylene oxide) (PEO) loaded with keratin hydrolysate (KH) via a mono-electrospinning process onto a poly(lactic acid) (PLA) film, which was used as a support. The second layer consisted of encapsulating a bovine collagen hydrolysate (CH) into poly(vinyl pyrrolidone) (PVP) through a coaxial electrospinning process, which was added onto the previous layer. This assemblage was characterized by electronic microscopy for morphology and the controlled release of KH. In vitro biocompatibility was evaluated on the L929 (NCTC) murine fibroblasts using quantitative MTT assay and qualitative cell morphological examination after Giemsa staining. Additionally, in vivo biocompatibility methods were used to assess the impact of the biomaterial on white Swiss mice, including the evaluation of hematological, biochemical, and immunological profiles, as well as its impact on oxidative stress. The results revealed a nanofibrous structure for each layer, and the assembled product demonstrated antioxidant activity, controlled release of KH, a high degree of in vitro biocompatibility, negligible hematological and biochemical changes, and minimal impact of certain specific oxidative stress parameters compared to the use of patches with textile support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fibers
Fibers Engineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍: Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信