声动力纳米和微型游泳者:从个体行为到集体行为

IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY
Jeffrey M. McNeill,  and , Thomas E. Mallouk*, 
{"title":"声动力纳米和微型游泳者:从个体行为到集体行为","authors":"Jeffrey M. McNeill,&nbsp; and ,&nbsp;Thomas E. Mallouk*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00038","DOIUrl":null,"url":null,"abstract":"<p >Micro- and nanoscopic particles that swim autonomously and self-assemble under the influence of chemical fuels and external fields show promise for realizing systems capable of carrying out large-scale, predetermined tasks. Different behaviors can be realized by tuning swimmer interactions at the individual level in a manner analogous to the emergent collective behavior of bacteria and mammalian cells. However, the limited toolbox of weak forces with which to drive these systems has made it difficult to achieve useful collective functions. Here, we review recent research on driving swimming and particle self-organization using acoustic fields, which offers capabilities complementary to those of the other methods used to power microswimmers. With either chemical or acoustic propulsion (or a combination of the two), understanding individual swimming mechanisms and the forces that arise between individual particles is a prerequisite to harnessing their interactions to realize collective phenomena and macroscopic functionality. We discuss here the ingredients necessary to drive the motion of microscopic particles using ultrasound, the theory that describes that behavior, and the gaps in our understanding. We then cover the combination of acoustically powered systems with other cross-compatible driving forces and the use of ultrasound in generating collective behavior. Finally, we highlight the demonstrated applications of acoustically powered microswimmers, and we offer a perspective on the state of the field, open questions, and opportunities. We hope that this review will serve as a guide to students beginning their work in this area and motivate others to consider research in microswimmers and acoustic fields.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 6","pages":"424–440"},"PeriodicalIF":4.8000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00038","citationCount":"0","resultStr":"{\"title\":\"Acoustically Powered Nano- and Microswimmers: From Individual to Collective Behavior\",\"authors\":\"Jeffrey M. McNeill,&nbsp; and ,&nbsp;Thomas E. Mallouk*,&nbsp;\",\"doi\":\"10.1021/acsnanoscienceau.3c00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Micro- and nanoscopic particles that swim autonomously and self-assemble under the influence of chemical fuels and external fields show promise for realizing systems capable of carrying out large-scale, predetermined tasks. Different behaviors can be realized by tuning swimmer interactions at the individual level in a manner analogous to the emergent collective behavior of bacteria and mammalian cells. However, the limited toolbox of weak forces with which to drive these systems has made it difficult to achieve useful collective functions. Here, we review recent research on driving swimming and particle self-organization using acoustic fields, which offers capabilities complementary to those of the other methods used to power microswimmers. With either chemical or acoustic propulsion (or a combination of the two), understanding individual swimming mechanisms and the forces that arise between individual particles is a prerequisite to harnessing their interactions to realize collective phenomena and macroscopic functionality. We discuss here the ingredients necessary to drive the motion of microscopic particles using ultrasound, the theory that describes that behavior, and the gaps in our understanding. We then cover the combination of acoustically powered systems with other cross-compatible driving forces and the use of ultrasound in generating collective behavior. Finally, we highlight the demonstrated applications of acoustically powered microswimmers, and we offer a perspective on the state of the field, open questions, and opportunities. We hope that this review will serve as a guide to students beginning their work in this area and motivate others to consider research in microswimmers and acoustic fields.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"3 6\",\"pages\":\"424–440\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00038\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在化学燃料和外部磁场的影响下,能够自主游动和自我组装的微型和纳米粒子有望实现能够执行大规模预定任务的系统。通过调整游动个体之间的相互作用,可以实现不同的行为,其方式类似于细菌和哺乳动物细胞的突发集体行为。然而,由于可用于驱动这些系统的弱力工具箱有限,因此很难实现有用的集体功能。在此,我们回顾了利用声场驱动游泳和粒子自组织的最新研究,这些研究提供了与用于驱动微型游泳者的其他方法相辅相成的能力。在化学或声学推进(或两者结合)的情况下,了解单个游动机制和单个粒子之间产生的作用力是利用它们的相互作用实现集体现象和宏观功能的先决条件。我们在此讨论利用超声波驱动微观粒子运动的必要因素、描述这种行为的理论以及我们在理解上的差距。然后,我们将介绍声动力系统与其他交叉兼容驱动力的结合,以及利用超声波产生集体行为。最后,我们重点介绍了声动力微型游泳器的示范应用,并对该领域的现状、未决问题和机遇提出了看法。我们希望这篇综述能为开始从事该领域研究的学生提供指导,并激励其他人考虑微泳器和声场研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Acoustically Powered Nano- and Microswimmers: From Individual to Collective Behavior

Acoustically Powered Nano- and Microswimmers: From Individual to Collective Behavior

Acoustically Powered Nano- and Microswimmers: From Individual to Collective Behavior

Micro- and nanoscopic particles that swim autonomously and self-assemble under the influence of chemical fuels and external fields show promise for realizing systems capable of carrying out large-scale, predetermined tasks. Different behaviors can be realized by tuning swimmer interactions at the individual level in a manner analogous to the emergent collective behavior of bacteria and mammalian cells. However, the limited toolbox of weak forces with which to drive these systems has made it difficult to achieve useful collective functions. Here, we review recent research on driving swimming and particle self-organization using acoustic fields, which offers capabilities complementary to those of the other methods used to power microswimmers. With either chemical or acoustic propulsion (or a combination of the two), understanding individual swimming mechanisms and the forces that arise between individual particles is a prerequisite to harnessing their interactions to realize collective phenomena and macroscopic functionality. We discuss here the ingredients necessary to drive the motion of microscopic particles using ultrasound, the theory that describes that behavior, and the gaps in our understanding. We then cover the combination of acoustically powered systems with other cross-compatible driving forces and the use of ultrasound in generating collective behavior. Finally, we highlight the demonstrated applications of acoustically powered microswimmers, and we offer a perspective on the state of the field, open questions, and opportunities. We hope that this review will serve as a guide to students beginning their work in this area and motivate others to consider research in microswimmers and acoustic fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信