Jiří Dvořák, Martin Jankovský, Mariusz Kormanek, Pavel Natov, Pavel Straka
{"title":"挪威云杉(Picea abies)的转化H.喀斯特)树木的茎体积与产生的伐木残留物和木屑的体积之比","authors":"Jiří Dvořák, Martin Jankovský, Mariusz Kormanek, Pavel Natov, Pavel Straka","doi":"10.1093/forestry/cpad003","DOIUrl":null,"url":null,"abstract":"Abstract As a renewable fuel, logging residues, as well as other dendromass, are in high demand. On the other hand, they can serve as a natural fertilizer and stabilize biodiversity in forest ecosystems. Therefore, they need to be used rationally, with due care for the volumes extracted from a particular stand. The volume of logging residues is difficult to measure; thus, foresters need a tool to estimate it, ideally via a simple method based on easily measurable parameters. Conversion factors, based on tree stem volume can serve this purpose. In this study, we develop such conversion factors for thinnings of Norway spruce (Picea abies (L.) H. Karst.) stands. First, we analyzed the relationship between the tree stem volume (ranging between 0.03 and 0.44 m3 stem−1) and the volumes of related logging residues or wood chips via linear regression and correlation analysis. Then, we assessed the significance of differences between volumes of logging residues or wood chips for trees in the five relevant stem volume classes and determined appropriate conversion factors. The conversion factors for wood chips ranged between 1.37 loose cubic meters of logging residue per cubic meter of timber in the largest stem volume class to 2.17 for the smallest stem volume class. The model, on which the conversion factors were based had a coefficient of determination of 0.88. Conversion to logging residue volume yielded factors ranging from 2.2 stacked cubic meters per cubic meter of timber for the largest stem volume class to 10.2 in the smallest stem volume class. The coefficient of determination of the underlying model was 0.69. The conversion factors are based on sufficiently accurate models and can be used in practical forestry for planning purposes, recordkeeping, and remuneration of loggers.","PeriodicalId":12342,"journal":{"name":"Forestry","volume":"8 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversion of Norway spruce (<i>Picea abies (L.) H. Karst.</i>) tree stem volume to volumes of produced logging residues and wood chips\",\"authors\":\"Jiří Dvořák, Martin Jankovský, Mariusz Kormanek, Pavel Natov, Pavel Straka\",\"doi\":\"10.1093/forestry/cpad003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As a renewable fuel, logging residues, as well as other dendromass, are in high demand. On the other hand, they can serve as a natural fertilizer and stabilize biodiversity in forest ecosystems. Therefore, they need to be used rationally, with due care for the volumes extracted from a particular stand. The volume of logging residues is difficult to measure; thus, foresters need a tool to estimate it, ideally via a simple method based on easily measurable parameters. Conversion factors, based on tree stem volume can serve this purpose. In this study, we develop such conversion factors for thinnings of Norway spruce (Picea abies (L.) H. Karst.) stands. First, we analyzed the relationship between the tree stem volume (ranging between 0.03 and 0.44 m3 stem−1) and the volumes of related logging residues or wood chips via linear regression and correlation analysis. Then, we assessed the significance of differences between volumes of logging residues or wood chips for trees in the five relevant stem volume classes and determined appropriate conversion factors. The conversion factors for wood chips ranged between 1.37 loose cubic meters of logging residue per cubic meter of timber in the largest stem volume class to 2.17 for the smallest stem volume class. The model, on which the conversion factors were based had a coefficient of determination of 0.88. Conversion to logging residue volume yielded factors ranging from 2.2 stacked cubic meters per cubic meter of timber for the largest stem volume class to 10.2 in the smallest stem volume class. The coefficient of determination of the underlying model was 0.69. The conversion factors are based on sufficiently accurate models and can be used in practical forestry for planning purposes, recordkeeping, and remuneration of loggers.\",\"PeriodicalId\":12342,\"journal\":{\"name\":\"Forestry\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forestry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/forestry/cpad003\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forestry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/forestry/cpad003","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Conversion of Norway spruce (Picea abies (L.) H. Karst.) tree stem volume to volumes of produced logging residues and wood chips
Abstract As a renewable fuel, logging residues, as well as other dendromass, are in high demand. On the other hand, they can serve as a natural fertilizer and stabilize biodiversity in forest ecosystems. Therefore, they need to be used rationally, with due care for the volumes extracted from a particular stand. The volume of logging residues is difficult to measure; thus, foresters need a tool to estimate it, ideally via a simple method based on easily measurable parameters. Conversion factors, based on tree stem volume can serve this purpose. In this study, we develop such conversion factors for thinnings of Norway spruce (Picea abies (L.) H. Karst.) stands. First, we analyzed the relationship between the tree stem volume (ranging between 0.03 and 0.44 m3 stem−1) and the volumes of related logging residues or wood chips via linear regression and correlation analysis. Then, we assessed the significance of differences between volumes of logging residues or wood chips for trees in the five relevant stem volume classes and determined appropriate conversion factors. The conversion factors for wood chips ranged between 1.37 loose cubic meters of logging residue per cubic meter of timber in the largest stem volume class to 2.17 for the smallest stem volume class. The model, on which the conversion factors were based had a coefficient of determination of 0.88. Conversion to logging residue volume yielded factors ranging from 2.2 stacked cubic meters per cubic meter of timber for the largest stem volume class to 10.2 in the smallest stem volume class. The coefficient of determination of the underlying model was 0.69. The conversion factors are based on sufficiently accurate models and can be used in practical forestry for planning purposes, recordkeeping, and remuneration of loggers.
期刊介绍:
The journal is inclusive of all subjects, geographical zones and study locations, including trees in urban environments, plantations and natural forests. We welcome papers that consider economic, environmental and social factors and, in particular, studies that take an integrated approach to sustainable management. In considering suitability for publication, attention is given to the originality of contributions and their likely impact on policy and practice, as well as their contribution to the development of knowledge.
Special Issues - each year one edition of Forestry will be a Special Issue and will focus on one subject in detail; this will usually be by publication of the proceedings of an international meeting.