具有低阶余项的尖锐Sobolev不等式的一个扭曲

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Emmanuel Hebey
{"title":"具有低阶余项的尖锐Sobolev不等式的一个扭曲","authors":"Emmanuel Hebey","doi":"10.1515/acv-2022-0046","DOIUrl":null,"url":null,"abstract":"Abstract Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> {(M,g)} be a smooth compact Riemannian manifold of dimension <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> {n\\geq 3} . Let also A be a smooth symmetrical positive <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> {(0,2)} -tensor field in M . By the Sobolev embedding theorem, we can write that there exist <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>K</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> {K,B&gt;0} such that for any <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {u\\in H^{1}(M)} , (0.1) <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mrow> <m:mo>∥</m:mo> <m:mi>u</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:msup> <m:mi>L</m:mi> <m:msup> <m:mn>2</m:mn> <m:mo>⋆</m:mo> </m:msup> </m:msup> <m:mn>2</m:mn> </m:msubsup> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mi>K</m:mi> <m:mo>⁢</m:mo> <m:msubsup> <m:mrow> <m:mo>∥</m:mo> <m:mrow> <m:msub> <m:mo>∇</m:mo> <m:mi>A</m:mi> </m:msub> <m:mo>⁡</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>∥</m:mo> </m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mn>2</m:mn> </m:msubsup> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>B</m:mi> <m:mo>⁢</m:mo> <m:msubsup> <m:mrow> <m:mo>∥</m:mo> <m:mi>u</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:mrow> </m:mrow> </m:math> \\|u\\|_{L^{2^{\\star}}}^{2}\\leq K\\|\\nabla_{A}u\\|_{L^{2}}^{2}+B\\|u\\|_{L^{1}}^{2} where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {H^{1}(M)} is the standard Sobolev space of functions in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> {L^{2}} with one derivative in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> {L^{2}} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:msub> <m:mo>∇</m:mo> <m:mi>A</m:mi> </m:msub> <m:mo>⁡</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>∇</m:mo> <m:mo>⁡</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:mo>∇</m:mo> <m:mo>⁡</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {|\\nabla_{A}u|^{2}=A(\\nabla u,\\nabla u)} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mn>2</m:mn> <m:mo>⋆</m:mo> </m:msup> </m:math> {2^{\\star}} is the critical Sobolev exponent for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> {H^{1}} . We compute in this paper the value of the best possible K in (0.1) and investigate the validity of the corresponding sharp inequality.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A twist in sharp Sobolev inequalities with lower order remainder terms\",\"authors\":\"Emmanuel Hebey\",\"doi\":\"10.1515/acv-2022-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>M</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> {(M,g)} be a smooth compact Riemannian manifold of dimension <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> {n\\\\geq 3} . Let also A be a smooth symmetrical positive <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> {(0,2)} -tensor field in M . By the Sobolev embedding theorem, we can write that there exist <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>K</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> {K,B&gt;0} such that for any <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {u\\\\in H^{1}(M)} , (0.1) <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msubsup> <m:mrow> <m:mo>∥</m:mo> <m:mi>u</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:msup> <m:mi>L</m:mi> <m:msup> <m:mn>2</m:mn> <m:mo>⋆</m:mo> </m:msup> </m:msup> <m:mn>2</m:mn> </m:msubsup> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mi>K</m:mi> <m:mo>⁢</m:mo> <m:msubsup> <m:mrow> <m:mo>∥</m:mo> <m:mrow> <m:msub> <m:mo>∇</m:mo> <m:mi>A</m:mi> </m:msub> <m:mo>⁡</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>∥</m:mo> </m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mn>2</m:mn> </m:msubsup> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>B</m:mi> <m:mo>⁢</m:mo> <m:msubsup> <m:mrow> <m:mo>∥</m:mo> <m:mi>u</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:mrow> </m:mrow> </m:math> \\\\|u\\\\|_{L^{2^{\\\\star}}}^{2}\\\\leq K\\\\|\\\\nabla_{A}u\\\\|_{L^{2}}^{2}+B\\\\|u\\\\|_{L^{1}}^{2} where <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> {H^{1}(M)} is the standard Sobolev space of functions in <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> {L^{2}} with one derivative in <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> {L^{2}} , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mrow> <m:msub> <m:mo>∇</m:mo> <m:mi>A</m:mi> </m:msub> <m:mo>⁡</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>∇</m:mo> <m:mo>⁡</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:mo>∇</m:mo> <m:mo>⁡</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {|\\\\nabla_{A}u|^{2}=A(\\\\nabla u,\\\\nabla u)} and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mn>2</m:mn> <m:mo>⋆</m:mo> </m:msup> </m:math> {2^{\\\\star}} is the critical Sobolev exponent for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> {H^{1}} . We compute in this paper the value of the best possible K in (0.1) and investigate the validity of the corresponding sharp inequality.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0046\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/acv-2022-0046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要设(M,g) {(M,g)}是维数n≥3n的光滑紧致黎曼流形{\geq 3}。也设A是{M中的光滑对称正(0,2)}(0,2)张量场。根据Sobolev嵌入定理,我们可以写出存在K, B &gt;0{ K,B&gt;0}使得对于任意u∈H 1¹(M){ u \in H¹(M),{(0.1)∥u∥L²- 2≤K¹∥∇A²∥L²\|u\|_L}²^ }{{{\star}}} ^{2}\leq K\| \nabla _Au{\|_L²}^{2{+}}B\|u\|_L{²}^{2{其中}}H 1(M) H²(M{)是}L²L²中函数的{标准{Sobolev空间在L²L²}中}有一个导数,{|∇A²u | 2 = A²(∇²)u,∇{(u}}){ | {}}{\nabla _Au|{^}2=A({}\nabla u, \nabla u)和2 - - 2^ }{{\star}}是H^1的{临界{Sobolev指数。本文计算了(0.1)}}中最优可能K的值,并研究了相应的尖锐不等式的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A twist in sharp Sobolev inequalities with lower order remainder terms
Abstract Let ( M , g ) {(M,g)} be a smooth compact Riemannian manifold of dimension n 3 {n\geq 3} . Let also A be a smooth symmetrical positive ( 0 , 2 ) {(0,2)} -tensor field in M . By the Sobolev embedding theorem, we can write that there exist K , B > 0 {K,B>0} such that for any u H 1 ( M ) {u\in H^{1}(M)} , (0.1) u L 2 2 K A u L 2 2 + B u L 1 2 \|u\|_{L^{2^{\star}}}^{2}\leq K\|\nabla_{A}u\|_{L^{2}}^{2}+B\|u\|_{L^{1}}^{2} where H 1 ( M ) {H^{1}(M)} is the standard Sobolev space of functions in L 2 {L^{2}} with one derivative in L 2 {L^{2}} , | A u | 2 = A ( u , u ) {|\nabla_{A}u|^{2}=A(\nabla u,\nabla u)} and 2 {2^{\star}} is the critical Sobolev exponent for H 1 {H^{1}} . We compute in this paper the value of the best possible K in (0.1) and investigate the validity of the corresponding sharp inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信