Boris Sedlak;Ilir Murturi;Praveen Kumar Donta;Schahram Dustdar
{"title":"边缘数据流隐私保护框架","authors":"Boris Sedlak;Ilir Murturi;Praveen Kumar Donta;Schahram Dustdar","doi":"10.1109/TETC.2023.3315131","DOIUrl":null,"url":null,"abstract":"Recent developments in machine learning (ML) allow for efficient data stream processing and also help in meeting various privacy requirements. Traditionally, predefined privacy policies are enforced in resource-rich and homogeneous environments such as in the cloud to protect sensitive information from being exposed. However, large amounts of data streams generated from heterogeneous IoT devices often result in high computational costs, cause network latency, and increase the chance of data interruption as data travels away from the source. Therefore, this article proposes a novel privacy-enforcing framework for transforming data streams by executing various privacy policies close to the data source. To achieve our proposed framework, we enable domain experts to specify high-level privacy policies in a human-readable form. Then, the edge-based runtime system analyzes data streams (i.e., generated from nearby IoT devices), interprets privacy policies (i.e., deployed on edge devices), and transforms data streams if privacy violations occur. Our proposed runtime mechanism uses a Deep Neural Networks (DNN) technique to detect privacy violations within the streamed data. Furthermore, we discuss the framework, processes of the approach, and the experiments carried out on a real-world testbed to validate its feasibility and applicability.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 3","pages":"852-863"},"PeriodicalIF":5.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Privacy Enforcing Framework for Data Streams on the Edge\",\"authors\":\"Boris Sedlak;Ilir Murturi;Praveen Kumar Donta;Schahram Dustdar\",\"doi\":\"10.1109/TETC.2023.3315131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in machine learning (ML) allow for efficient data stream processing and also help in meeting various privacy requirements. Traditionally, predefined privacy policies are enforced in resource-rich and homogeneous environments such as in the cloud to protect sensitive information from being exposed. However, large amounts of data streams generated from heterogeneous IoT devices often result in high computational costs, cause network latency, and increase the chance of data interruption as data travels away from the source. Therefore, this article proposes a novel privacy-enforcing framework for transforming data streams by executing various privacy policies close to the data source. To achieve our proposed framework, we enable domain experts to specify high-level privacy policies in a human-readable form. Then, the edge-based runtime system analyzes data streams (i.e., generated from nearby IoT devices), interprets privacy policies (i.e., deployed on edge devices), and transforms data streams if privacy violations occur. Our proposed runtime mechanism uses a Deep Neural Networks (DNN) technique to detect privacy violations within the streamed data. Furthermore, we discuss the framework, processes of the approach, and the experiments carried out on a real-world testbed to validate its feasibility and applicability.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"12 3\",\"pages\":\"852-863\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10265750/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10265750/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Privacy Enforcing Framework for Data Streams on the Edge
Recent developments in machine learning (ML) allow for efficient data stream processing and also help in meeting various privacy requirements. Traditionally, predefined privacy policies are enforced in resource-rich and homogeneous environments such as in the cloud to protect sensitive information from being exposed. However, large amounts of data streams generated from heterogeneous IoT devices often result in high computational costs, cause network latency, and increase the chance of data interruption as data travels away from the source. Therefore, this article proposes a novel privacy-enforcing framework for transforming data streams by executing various privacy policies close to the data source. To achieve our proposed framework, we enable domain experts to specify high-level privacy policies in a human-readable form. Then, the edge-based runtime system analyzes data streams (i.e., generated from nearby IoT devices), interprets privacy policies (i.e., deployed on edge devices), and transforms data streams if privacy violations occur. Our proposed runtime mechanism uses a Deep Neural Networks (DNN) technique to detect privacy violations within the streamed data. Furthermore, we discuss the framework, processes of the approach, and the experiments carried out on a real-world testbed to validate its feasibility and applicability.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.