二维Weyl和不能沿直线消去平方根

IF 0.8 4区 数学 Q2 MATHEMATICS
Julia Brandes, Igor E. Shparlinski
{"title":"二维Weyl和不能沿直线消去平方根","authors":"Julia Brandes, Igor E. Shparlinski","doi":"10.4310/arkiv.2023.v61.n2.a1","DOIUrl":null,"url":null,"abstract":"We show that a certain two-dimensional family of Weyl sums of length $P$ takes values as large as $P^{3/4 + o(1)}$ on almost all linear slices of the unit torus, contradicting a widely held expectation that Weyl sums should exhibit square-root cancellation on generic subvarieties of the unit torus. This is an extension of a result of J. Brandes, S. T. Parsell, C. Poulias, G. Shakan and R. C. Vaughan (2020) from quadratic and cubic monomials to general polynomials of arbitrary degree. The new ingredients of our approach are the classical results of E. Bombieri (1966) on exponential sums along a curve and R. J. Duffin and A. C. Schaeffer (1941) on Diophantine approximations by rational numbers with prime denominators.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-dimensional Weyl sums failing square-root cancellation along lines\",\"authors\":\"Julia Brandes, Igor E. Shparlinski\",\"doi\":\"10.4310/arkiv.2023.v61.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a certain two-dimensional family of Weyl sums of length $P$ takes values as large as $P^{3/4 + o(1)}$ on almost all linear slices of the unit torus, contradicting a widely held expectation that Weyl sums should exhibit square-root cancellation on generic subvarieties of the unit torus. This is an extension of a result of J. Brandes, S. T. Parsell, C. Poulias, G. Shakan and R. C. Vaughan (2020) from quadratic and cubic monomials to general polynomials of arbitrary degree. The new ingredients of our approach are the classical results of E. Bombieri (1966) on exponential sums along a curve and R. J. Duffin and A. C. Schaeffer (1941) on Diophantine approximations by rational numbers with prime denominators.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2023.v61.n2.a1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n2.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了长度为$P$的二维Weyl和族在几乎所有单位环面线性片上的值都高达$P^{3/4 + o(1)}$,这与人们普遍认为Weyl和在单位环面的一般子变异上应该表现平方根消去的期望相矛盾。这是J. Brandes, S. T. Parsell, C. Poulias, G. Shakan和R. C. Vaughan(2020)从二次多项式和三次多项式到任意次一般多项式的结果的推广。我们方法的新成分是E. Bombieri(1966)关于曲线上的指数和的经典结果,以及R. J. Duffin和a . C. Schaeffer(1941)关于以素数为分母的有理数的Diophantine近似的经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-dimensional Weyl sums failing square-root cancellation along lines
We show that a certain two-dimensional family of Weyl sums of length $P$ takes values as large as $P^{3/4 + o(1)}$ on almost all linear slices of the unit torus, contradicting a widely held expectation that Weyl sums should exhibit square-root cancellation on generic subvarieties of the unit torus. This is an extension of a result of J. Brandes, S. T. Parsell, C. Poulias, G. Shakan and R. C. Vaughan (2020) from quadratic and cubic monomials to general polynomials of arbitrary degree. The new ingredients of our approach are the classical results of E. Bombieri (1966) on exponential sums along a curve and R. J. Duffin and A. C. Schaeffer (1941) on Diophantine approximations by rational numbers with prime denominators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信