{"title":"利用1米分辨率激光雷达生成的DEM重新研究野外调查的高程和土壤性质变化","authors":"Kamille Lemieux, Paul A. Arp","doi":"10.4236/ojss.2023.139017","DOIUrl":null,"url":null,"abstract":"This article presents a 2017 LiDAR-DEM guided 1-m resolution examination of field-surveyed elevation and soil property variations (5 × 5 m spacings) conducted in 1977 across a hummocky New Brunswick field used for potato production. This examination revealed that the field incurred minor elevation differences likely due to upslope erosion as revealed through increasing Sand % and CF % with increasing elevation, and increasing Silt % along low-lying areas. Soil moisture, field capacity, permanent wilting and nitrate nitrogen (NO3-N) also increased at downslope locations. Directly as well as indirectly, soil pH, ammonium nitrogen (NH4-N), Caesium137 (Cs137) and Mehlich-3 extracted Ca, Mg, K, Fe, Mn, Cu, and Zn were likewise affected by topographic location. Factor analyzing these variables led to: 1) a Soil Loss Factor that captured 24% of the textural variations; 2) a Soil-Cropping Factor accounting for 16% of the N, P, K, Ca, Mg, Mn variations; 3) a Soil Organic Matter (SOM) Factor relating 9% of the in-field variations for SOM, Fe, Zn, Cu to via organo-metal complexation and low NO3-N retention. Many of the topographic variations increased or decreased with the metric DEM-projected depth-to-water index (DTW) index. This index was set to 0 along DEM-derived flow channels with minimum upslope flow-accumulation areas of 0.1, 0.25, 0.5, 1 or 4 ha. Among these, the DTW > 4 ha threshold was useful for reproducing the textural variations, while the DTW > 0.25 ha threshold assisted in capturing trends pertaining to moisture retention and elemental concentrations.","PeriodicalId":218747,"journal":{"name":"Open Journal of Soil Science","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Re-Examining Field-Surveyed Variations in Elevation and Soil Properties with a 1-m Resolution LiDAR-Generated DEM\",\"authors\":\"Kamille Lemieux, Paul A. Arp\",\"doi\":\"10.4236/ojss.2023.139017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a 2017 LiDAR-DEM guided 1-m resolution examination of field-surveyed elevation and soil property variations (5 × 5 m spacings) conducted in 1977 across a hummocky New Brunswick field used for potato production. This examination revealed that the field incurred minor elevation differences likely due to upslope erosion as revealed through increasing Sand % and CF % with increasing elevation, and increasing Silt % along low-lying areas. Soil moisture, field capacity, permanent wilting and nitrate nitrogen (NO3-N) also increased at downslope locations. Directly as well as indirectly, soil pH, ammonium nitrogen (NH4-N), Caesium137 (Cs137) and Mehlich-3 extracted Ca, Mg, K, Fe, Mn, Cu, and Zn were likewise affected by topographic location. Factor analyzing these variables led to: 1) a Soil Loss Factor that captured 24% of the textural variations; 2) a Soil-Cropping Factor accounting for 16% of the N, P, K, Ca, Mg, Mn variations; 3) a Soil Organic Matter (SOM) Factor relating 9% of the in-field variations for SOM, Fe, Zn, Cu to via organo-metal complexation and low NO3-N retention. Many of the topographic variations increased or decreased with the metric DEM-projected depth-to-water index (DTW) index. This index was set to 0 along DEM-derived flow channels with minimum upslope flow-accumulation areas of 0.1, 0.25, 0.5, 1 or 4 ha. Among these, the DTW > 4 ha threshold was useful for reproducing the textural variations, while the DTW > 0.25 ha threshold assisted in capturing trends pertaining to moisture retention and elemental concentrations.\",\"PeriodicalId\":218747,\"journal\":{\"name\":\"Open Journal of Soil Science\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ojss.2023.139017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ojss.2023.139017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Re-Examining Field-Surveyed Variations in Elevation and Soil Properties with a 1-m Resolution LiDAR-Generated DEM
This article presents a 2017 LiDAR-DEM guided 1-m resolution examination of field-surveyed elevation and soil property variations (5 × 5 m spacings) conducted in 1977 across a hummocky New Brunswick field used for potato production. This examination revealed that the field incurred minor elevation differences likely due to upslope erosion as revealed through increasing Sand % and CF % with increasing elevation, and increasing Silt % along low-lying areas. Soil moisture, field capacity, permanent wilting and nitrate nitrogen (NO3-N) also increased at downslope locations. Directly as well as indirectly, soil pH, ammonium nitrogen (NH4-N), Caesium137 (Cs137) and Mehlich-3 extracted Ca, Mg, K, Fe, Mn, Cu, and Zn were likewise affected by topographic location. Factor analyzing these variables led to: 1) a Soil Loss Factor that captured 24% of the textural variations; 2) a Soil-Cropping Factor accounting for 16% of the N, P, K, Ca, Mg, Mn variations; 3) a Soil Organic Matter (SOM) Factor relating 9% of the in-field variations for SOM, Fe, Zn, Cu to via organo-metal complexation and low NO3-N retention. Many of the topographic variations increased or decreased with the metric DEM-projected depth-to-water index (DTW) index. This index was set to 0 along DEM-derived flow channels with minimum upslope flow-accumulation areas of 0.1, 0.25, 0.5, 1 or 4 ha. Among these, the DTW > 4 ha threshold was useful for reproducing the textural variations, while the DTW > 0.25 ha threshold assisted in capturing trends pertaining to moisture retention and elemental concentrations.