{"title":"易感-感染-恢复模型作为激励和教授微分方程的工具:一种分析方法","authors":"Minchul Kang","doi":"10.1080/0020739x.2023.2249898","DOIUrl":null,"url":null,"abstract":"AbstractSince the introduction by Kermack and McKendrick in 1927, the Susceptible–Infected–Recovered (SIR) epidemic model has been a foundational model to comprehend and predict the dynamics of infectious diseases. Almost for a century, the SIR model has been modified and extended to meet the needs of different characteristics of various infectious diseases including recent COVID-19 breakouts, which stimulates the advance in mathematical epidemiology theory significantly. Some of the mathematical ideas and techniques developed are also relevant to motivate teaching various topics in differential equations by connecting students' life experiences with current pandemics to meaningful classroom learning activities. Here, various pedagogically relevant topics from the SIR model are provided for undergraduate differential equation class, which includes (1) compartmental modelling and mass action kinetic modelling, (2) conservation rule and model reduction, (3) introduction to phase plane by removing time variable to derive trajectory equations, (4) transformation of equations to equivalent forms, (5) transformation of second-order system to second-order ODE, (6) deriving an analytic solution to the SIR equation by solving Bernoulli's equation, (7) deriving an analytic solution to the SIR equation from trajectory equations and (8) deriving an analytic solution to the SIR equation from exponential substitutions.Keywords: SIR modelundergraduateeducationdifferential equationsanalytic solutionsMathematics Subject Classifications: 97M1097M60 Disclosure statementNo potential conflict of interest was reported by the author.","PeriodicalId":14026,"journal":{"name":"International Journal of Mathematical Education in Science and Technology","volume":"89 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The susceptible–infected–recovered model as a tool to motivate and teach differential equations: an analytic approach\",\"authors\":\"Minchul Kang\",\"doi\":\"10.1080/0020739x.2023.2249898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractSince the introduction by Kermack and McKendrick in 1927, the Susceptible–Infected–Recovered (SIR) epidemic model has been a foundational model to comprehend and predict the dynamics of infectious diseases. Almost for a century, the SIR model has been modified and extended to meet the needs of different characteristics of various infectious diseases including recent COVID-19 breakouts, which stimulates the advance in mathematical epidemiology theory significantly. Some of the mathematical ideas and techniques developed are also relevant to motivate teaching various topics in differential equations by connecting students' life experiences with current pandemics to meaningful classroom learning activities. Here, various pedagogically relevant topics from the SIR model are provided for undergraduate differential equation class, which includes (1) compartmental modelling and mass action kinetic modelling, (2) conservation rule and model reduction, (3) introduction to phase plane by removing time variable to derive trajectory equations, (4) transformation of equations to equivalent forms, (5) transformation of second-order system to second-order ODE, (6) deriving an analytic solution to the SIR equation by solving Bernoulli's equation, (7) deriving an analytic solution to the SIR equation from trajectory equations and (8) deriving an analytic solution to the SIR equation from exponential substitutions.Keywords: SIR modelundergraduateeducationdifferential equationsanalytic solutionsMathematics Subject Classifications: 97M1097M60 Disclosure statementNo potential conflict of interest was reported by the author.\",\"PeriodicalId\":14026,\"journal\":{\"name\":\"International Journal of Mathematical Education in Science and Technology\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Education in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0020739x.2023.2249898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Education in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0020739x.2023.2249898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
The susceptible–infected–recovered model as a tool to motivate and teach differential equations: an analytic approach
AbstractSince the introduction by Kermack and McKendrick in 1927, the Susceptible–Infected–Recovered (SIR) epidemic model has been a foundational model to comprehend and predict the dynamics of infectious diseases. Almost for a century, the SIR model has been modified and extended to meet the needs of different characteristics of various infectious diseases including recent COVID-19 breakouts, which stimulates the advance in mathematical epidemiology theory significantly. Some of the mathematical ideas and techniques developed are also relevant to motivate teaching various topics in differential equations by connecting students' life experiences with current pandemics to meaningful classroom learning activities. Here, various pedagogically relevant topics from the SIR model are provided for undergraduate differential equation class, which includes (1) compartmental modelling and mass action kinetic modelling, (2) conservation rule and model reduction, (3) introduction to phase plane by removing time variable to derive trajectory equations, (4) transformation of equations to equivalent forms, (5) transformation of second-order system to second-order ODE, (6) deriving an analytic solution to the SIR equation by solving Bernoulli's equation, (7) deriving an analytic solution to the SIR equation from trajectory equations and (8) deriving an analytic solution to the SIR equation from exponential substitutions.Keywords: SIR modelundergraduateeducationdifferential equationsanalytic solutionsMathematics Subject Classifications: 97M1097M60 Disclosure statementNo potential conflict of interest was reported by the author.
期刊介绍:
Mathematics is pervading every study and technique in our modern world, bringing ever more sharply into focus the responsibilities laid upon those whose task it is to teach it. Most prominent among these is the difficulty of presenting an interdisciplinary approach so that one professional group may benefit from the experience of others. The International Journal of Mathematical Education in Science and Technology provides a medium by which a wide range of experience in mathematical education can be presented, assimilated and eventually adapted to everyday needs in schools, colleges, polytechnics, universities, industry and commerce. Contributions will be welcomed from lecturers, teachers and users of mathematics at all levels on the contents of syllabuses and methods of presentation.