求质数幂和短间隔内幂的和

IF 0.8 4区 数学 Q2 MATHEMATICS
Yuta Suzuki
{"title":"求质数幂和短间隔内幂的和","authors":"Yuta Suzuki","doi":"10.4310/arkiv.2023.v61.n2.a8","DOIUrl":null,"url":null,"abstract":"Let $R_{k,\\ell}(N)$ be the representation function for the sum of the $k$-th power of a prime and the $\\ell$-th power of a positive integer. Languasco and Zaccagnini (2017) proved an asymptotic formula for the average of $R_{1,2}(N)$ over short intervals $(X,X+H]$ of the length $H$ slightly shorter than $X^{\\frac{1}{2}}$, which is shorter than the length $H=X^{\\frac{1}{2}+\\epsilon}$ in the exceptional set estimates of Mikawa (1993) and of Perelli and Pintz (1995). In this paper, we prove that the same asymptotic formula for $R_{1,2}(N)$ holds for $H$ of the size $X^{0.337}$. Recently, Languasco and Zaccagnini (2018) extended their result to more general $(k,\\ell)$. We also consider this general case, and as a corollary, we prove a conditional result of Languasco and Zaccagnini (2018) for the case $\\ell=2$ unconditionally up to some small factors.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"236 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the sum of a prime power and a power in short intervals\",\"authors\":\"Yuta Suzuki\",\"doi\":\"10.4310/arkiv.2023.v61.n2.a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R_{k,\\\\ell}(N)$ be the representation function for the sum of the $k$-th power of a prime and the $\\\\ell$-th power of a positive integer. Languasco and Zaccagnini (2017) proved an asymptotic formula for the average of $R_{1,2}(N)$ over short intervals $(X,X+H]$ of the length $H$ slightly shorter than $X^{\\\\frac{1}{2}}$, which is shorter than the length $H=X^{\\\\frac{1}{2}+\\\\epsilon}$ in the exceptional set estimates of Mikawa (1993) and of Perelli and Pintz (1995). In this paper, we prove that the same asymptotic formula for $R_{1,2}(N)$ holds for $H$ of the size $X^{0.337}$. Recently, Languasco and Zaccagnini (2018) extended their result to more general $(k,\\\\ell)$. We also consider this general case, and as a corollary, we prove a conditional result of Languasco and Zaccagnini (2018) for the case $\\\\ell=2$ unconditionally up to some small factors.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2023.v61.n2.a8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n2.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$R_{k,\ell}(N)$为质数的$k$次幂与正整数的$\ell$次幂之和的表示函数。Languasco和Zaccagnini(2017)证明了长度$H$略短于$X^{\frac{1}{2}}$的短间隔$(X,X+H]$上$R_{1,2}(N)$的平均值的渐近公式,该公式比Mikawa(1993)和Perelli和Pintz(1995)的例外集估计中的长度$H=X^{\frac{1}{2}+\epsilon}$短。在本文中,我们证明了对于大小为$X^{0.337}$的$H$,同样适用于$R_{1,2}(N)$的渐近公式。最近,Languasco和Zaccagnini(2018)将他们的结果扩展到更普遍的$(k,\ell)$。我们也考虑了这种一般情况,作为推论,我们无条件地证明了Languasco和Zaccagnini(2018)对$\ell=2$情况的条件结果,直到一些小因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the sum of a prime power and a power in short intervals
Let $R_{k,\ell}(N)$ be the representation function for the sum of the $k$-th power of a prime and the $\ell$-th power of a positive integer. Languasco and Zaccagnini (2017) proved an asymptotic formula for the average of $R_{1,2}(N)$ over short intervals $(X,X+H]$ of the length $H$ slightly shorter than $X^{\frac{1}{2}}$, which is shorter than the length $H=X^{\frac{1}{2}+\epsilon}$ in the exceptional set estimates of Mikawa (1993) and of Perelli and Pintz (1995). In this paper, we prove that the same asymptotic formula for $R_{1,2}(N)$ holds for $H$ of the size $X^{0.337}$. Recently, Languasco and Zaccagnini (2018) extended their result to more general $(k,\ell)$. We also consider this general case, and as a corollary, we prove a conditional result of Languasco and Zaccagnini (2018) for the case $\ell=2$ unconditionally up to some small factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信