数据稀缺、喀斯特、山区环境的有效洪水预警系统:一个案例研究

IF 3.1 Q2 WATER RESOURCES
Evangelos Rozos, Vasilis Bellos, John Kalogiros, Katerina Mazi
{"title":"数据稀缺、喀斯特、山区环境的有效洪水预警系统:一个案例研究","authors":"Evangelos Rozos, Vasilis Bellos, John Kalogiros, Katerina Mazi","doi":"10.3390/hydrology10100203","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient flood early warning system developed for the city of Mandra, Greece which experienced a devastating flood event in November 2017 resulting in significant loss of life. The location is of particular interest due to both its small-sized water basin (20 km2 upstream of the studied cross-section), necessitating a rapid response time for effective flood warning calculations, and the lack of hydrometric data. To address the first issue, a database of pre-simulated flooding events with a 2D hydrodynamic model corresponding to synthetic precipitations with different return periods was established. To address the latter issue, the hydrological model was calibrated using qualitative information collected after the catastrophic event, compensating for the lack of hydrometric data. The case study demonstrates the establishment of a hybrid (online–offline) flood early warning system in data-scarce environments. By utilizing pre-simulated events and qualitative information, the system provides valuable insights for flood forecasting and aids in decision-making processes. This approach can be applied to other similar locations with limited data availability, contributing to improved flood management strategies and enhanced community resilience.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":"1 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Flood Early Warning System for Data-Scarce, Karstic, Mountainous Environments: A Case Study\",\"authors\":\"Evangelos Rozos, Vasilis Bellos, John Kalogiros, Katerina Mazi\",\"doi\":\"10.3390/hydrology10100203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient flood early warning system developed for the city of Mandra, Greece which experienced a devastating flood event in November 2017 resulting in significant loss of life. The location is of particular interest due to both its small-sized water basin (20 km2 upstream of the studied cross-section), necessitating a rapid response time for effective flood warning calculations, and the lack of hydrometric data. To address the first issue, a database of pre-simulated flooding events with a 2D hydrodynamic model corresponding to synthetic precipitations with different return periods was established. To address the latter issue, the hydrological model was calibrated using qualitative information collected after the catastrophic event, compensating for the lack of hydrometric data. The case study demonstrates the establishment of a hybrid (online–offline) flood early warning system in data-scarce environments. By utilizing pre-simulated events and qualitative information, the system provides valuable insights for flood forecasting and aids in decision-making processes. This approach can be applied to other similar locations with limited data availability, contributing to improved flood management strategies and enhanced community resilience.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology10100203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10100203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了为希腊曼德拉市开发的高效洪水预警系统,该城市在2017年11月经历了一场毁灭性的洪水事件,造成了重大的生命损失。该地点特别令人感兴趣,因为它的水盆面积小(研究断面上游20平方公里),需要快速响应时间进行有效的洪水预警计算,并且缺乏水文数据。为了解决第一个问题,建立了一个预先模拟的洪水事件数据库,该数据库具有与不同重现期的合成降水相对应的二维水动力模型。为了解决后一个问题,利用灾难性事件后收集的定性信息对水文模型进行了校准,以弥补水文数据的缺乏。案例研究展示了在数据稀缺环境下建立一种混合型(线上-线下)洪水预警系统。通过利用预先模拟的事件和定性信息,该系统为洪水预报和决策过程提供了有价值的见解。这种方法可以应用于数据可用性有限的其他类似地点,有助于改善洪水管理策略和增强社区复原力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Flood Early Warning System for Data-Scarce, Karstic, Mountainous Environments: A Case Study
This paper presents an efficient flood early warning system developed for the city of Mandra, Greece which experienced a devastating flood event in November 2017 resulting in significant loss of life. The location is of particular interest due to both its small-sized water basin (20 km2 upstream of the studied cross-section), necessitating a rapid response time for effective flood warning calculations, and the lack of hydrometric data. To address the first issue, a database of pre-simulated flooding events with a 2D hydrodynamic model corresponding to synthetic precipitations with different return periods was established. To address the latter issue, the hydrological model was calibrated using qualitative information collected after the catastrophic event, compensating for the lack of hydrometric data. The case study demonstrates the establishment of a hybrid (online–offline) flood early warning system in data-scarce environments. By utilizing pre-simulated events and qualitative information, the system provides valuable insights for flood forecasting and aids in decision-making processes. This approach can be applied to other similar locations with limited data availability, contributing to improved flood management strategies and enhanced community resilience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrology
Hydrology Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍: Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信