{"title":"带内野的Leslie-Gower捕食-食饵三元模型动力学研究","authors":"C. Accarino, F. Capone, R. De Luca, G. Massa","doi":"10.1007/s11587-023-00822-9","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a predator–prey model with intraguild predation describing the evolution between three interacting species—namely prey, mesopredator and top predator—is investigated, with the aim to model a complete food web. In particular, the longtime behaviour of the solutions is analysed, proving the existence of an absorbing set, and the linear and nonlinear stability analyses of the coexistence equilibrium are performed.","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"12 4","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the dynamics of a Leslie–Gower predator–prey ternary model with intraguild\",\"authors\":\"C. Accarino, F. Capone, R. De Luca, G. Massa\",\"doi\":\"10.1007/s11587-023-00822-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a predator–prey model with intraguild predation describing the evolution between three interacting species—namely prey, mesopredator and top predator—is investigated, with the aim to model a complete food web. In particular, the longtime behaviour of the solutions is analysed, proving the existence of an absorbing set, and the linear and nonlinear stability analyses of the coexistence equilibrium are performed.\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"12 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00822-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11587-023-00822-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the dynamics of a Leslie–Gower predator–prey ternary model with intraguild
Abstract In this paper, a predator–prey model with intraguild predation describing the evolution between three interacting species—namely prey, mesopredator and top predator—is investigated, with the aim to model a complete food web. In particular, the longtime behaviour of the solutions is analysed, proving the existence of an absorbing set, and the linear and nonlinear stability analyses of the coexistence equilibrium are performed.
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.