带内野的Leslie-Gower捕食-食饵三元模型动力学研究

IF 1.1 4区 数学 Q1 MATHEMATICS
C. Accarino, F. Capone, R. De Luca, G. Massa
{"title":"带内野的Leslie-Gower捕食-食饵三元模型动力学研究","authors":"C. Accarino, F. Capone, R. De Luca, G. Massa","doi":"10.1007/s11587-023-00822-9","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a predator–prey model with intraguild predation describing the evolution between three interacting species—namely prey, mesopredator and top predator—is investigated, with the aim to model a complete food web. In particular, the longtime behaviour of the solutions is analysed, proving the existence of an absorbing set, and the linear and nonlinear stability analyses of the coexistence equilibrium are performed.","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"12 4","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the dynamics of a Leslie–Gower predator–prey ternary model with intraguild\",\"authors\":\"C. Accarino, F. Capone, R. De Luca, G. Massa\",\"doi\":\"10.1007/s11587-023-00822-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a predator–prey model with intraguild predation describing the evolution between three interacting species—namely prey, mesopredator and top predator—is investigated, with the aim to model a complete food web. In particular, the longtime behaviour of the solutions is analysed, proving the existence of an absorbing set, and the linear and nonlinear stability analyses of the coexistence equilibrium are performed.\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"12 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00822-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11587-023-00822-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了一个捕食者-食饵模型,该模型描述了捕食者、中捕食者和顶级捕食者这三个相互作用的物种之间的进化过程,旨在建立一个完整的食物网模型。特别地,分析了解的长期行为,证明了吸收集的存在性,并进行了共存平衡的线性和非线性稳定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the dynamics of a Leslie–Gower predator–prey ternary model with intraguild

On the dynamics of a Leslie–Gower predator–prey ternary model with intraguild
Abstract In this paper, a predator–prey model with intraguild predation describing the evolution between three interacting species—namely prey, mesopredator and top predator—is investigated, with the aim to model a complete food web. In particular, the longtime behaviour of the solutions is analysed, proving the existence of an absorbing set, and the linear and nonlinear stability analyses of the coexistence equilibrium are performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信